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Abstract
We examine online safe multi-agent reinforcement learning using constrained Markov games in
which agents compete by maximizing their expected total rewards under a constraint on expected
total utilities. Our focus is confined to an episodic two-player zero-sum constrained Markov game
with independent transition functions that are unknown to agents, adversarial reward functions,
and stochastic utility functions. For such a Markov game, we employ an approach based on the
occupancy measure to formulate it as an online constrained saddle-point problem with an explicit
constraint. We extend the Lagrange multiplier method in constrained optimization to handle the
constraint by creating a generalized Lagrangian with minimax decision primal variables and a
dual variable. Next, we develop an upper confidence reinforcement learning algorithm to solve
this Lagrangian problem while balancing exploration and exploitation. Our algorithm updates the
minimax decision primal variables via online mirror descent and the dual variable via projected
gradient step and we prove that it enjoys sublinear rate O((|X|+ |Y |)L

√
T (|A|+ |B|))) for both

regret and constraint violation after playing T episodes of the game. Here, L is the horizon of
each episode, (|X|, |A|) and (|Y |, |B|) are the state/action space sizes of the min-player and the
max-player, respectively. To the best of our knowledge, we provide the first provably efficient online
safe reinforcement learning algorithm in constrained Markov games.
Keywords: safe multi-agent reinforcement learning, constrained Markov game, upper confidence
reinforcement learning, generalized Lagrange multiplier method, online mirror descent

1. Introduction

Safe Reinforcement Learning (RL) studies how a single agent learns to maximize its expected
total reward subject to safety-concerned constraints by interacting with an unknown environment
over time (Garcıa and Fernández, 2015; Thomas, 2015; Amodei et al., 2016). The constrained
Markov decision processes (MDPs) provide a standard class of constraint critical environment
models (Altman, 1999) that are utilized in autonomous robots (Feyzabadi, 2017; Fisac et al., 2018),
personalized medicine (Girard, 2018), online advertising (Boutilier and Lu, 2016), and financial
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management (Abe et al., 2010). General constrained MDPs for two or more agents are often
formulated as constrained Markov games (MGs) in which agents compete under constraints (Altman
and Shwartz, 2000; Altman et al., 2005, 2008), providing an effective model for safe multi-agent
RL (Nguyen et al., 2014; Shalev-Shwartz et al., 2016; Zhang et al., 2021).

Considerable recent progress has been made in single-agent safe RL, especially for solving
constrained MDP problems with constraint satisfaction guarantees (Efroni et al., 2020; Brantley
et al., 2020; Bai et al., 2020a; Ding et al., 2021; Chen et al., 2021; Singh et al., 2022; Ding et al.,
2022). In these references, Lagrangian-based methods have been combined with the optimistic
exploration to address exploration-exploitation trade-off under constraints. These constrained MDP
learning algorithms are sample-efficient (in achieving both low regret and low constraint violation)
and they effectively enhance classical RL methods to attain safety requirements. However, most of
these algorithms are limited to the single-agent setting and it is an open question how to balance the
exploration-exploitation trade-off under constraints for multiple agents. Another motivation for our
work comes from recent advances on the efficient competitive RL algorithms in MGs (Wei et al.,
2017; Bai and Jin, 2020; Bai et al., 2020b; Xie et al., 2020).

In this work, we take initial steps towards developing provably efficient safe multi-agent RL
algorithms. We examine the most basic safe multi-agent RL setup that involves a two-player zero-sum
constrained MG with independent state transitions (Altman and Shwartz, 2000; Altman et al., 2005,
2008; Singh and Hemachandra, 2014). This problem represents a generalization of constrained
MDPs to the two-player case with coupled constraints. In such a constrained MG, the two players
follow two independent state transitions, take actions simultaneously, and observe the reward and
utility functions while competing against each other by maximizing/minimizing the reward while
both are restrained by the constraint regarding some utility for safety reasons. The decision-coupling
that arises from the constraint is often encountered in multi-agent systems (Rosen, 1965; Li and
Marden, 2014; Kulkarni, 2011, 2017; De Nijs, 2019). More specifically, we aim to design an online
RL algorithm for solving episodic two-player zero-sum constrained MGs. Here, the two players
do not know the transition models and have no access to a generative model, but can play the
game for multiple episodes using arbitrary policies. The goal is to find an approximate constrained
Nash equilibrium of the game in hindsight, a generalization of Nash equilibrium to characterize
violating constraints if any unilateral deviations occur. We utilize a notion of regret to quantify the
approximation error of the constrained Nash equilibrium and employ a constraint dissatisfaction
(which results from violation of any utility constraints) to evaluate the constraint violation.
Contribution. We develop the first provably efficient algorithm for a constrained Markov game
(MG) with O(

√
T ) regret and O(

√
T ) constraint violation. Specifically, we introduce an episodic

constrained MG with unknown independent transition functions and decision-couplings that come
from both adversarial reward functions and coupled stochastic constraints on utility functions. We
use the occupancy measure approach to formulate such a MG as a constrained saddle-point problem
with an explicit constraint. We extend the Lagrange method in constrained optimization to deal
with the constraint by creating a generalized Lagrangian with minimax decision primal variables
and a dual variable. We develop an upper confidence reinforcement learning algorithm – an Upper
Confidence Bound Constrained SAddle-Point Optimization (UCB-CSAPO) algorithm – to solve
this Lagrangian problem while balancing exploration and exploitation. Our algorithm updates the
minimax decision primal variables via optimistic mirror descent and the dual variable via projected
gradient step and we prove that it enjoys sublinear rate O((|X|+ |Y |)L

√
T (|A|+ |B|))) for both

regret and constraint violation after playing T episodes of the game. Here, L is the horizon of each
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episode, (|X|, |A|) and (|Y |, |B|) are the state/action space sizes of the min-player and max-player,
respectively.
Related Work. We briefly review the most-related work; see Appendix 6 for details. Our work is
closely related to safe multi-agent RL in constrained MGs. The Nash equilibrium for constrained
MGs have been studied in Altman and Shwartz (2000); Gómez-Ramırez et al. (2003); Altman
et al. (2005); Alvarez-Mena and Hernández-Lerma (2006); Altman et al. (2007, 2008); Altman and
Solan (2009); Singh and Hemachandra (2014) using the notion of constrained Nash equilibrium
(which generalizes the concept of generalized Nash equilibrium in static games (Arrow and Debreu,
1954) to MGs); see more studies in Yaji and Bhatnagar (2015); Zhang (2019); Wei (2020, 2021);
Zhang and Zou (2021). These results are not applicable to the RL setting that assumes unknown
models. Recently, asymptotic convergence in learning constrained MGs was examined in Hakami
and Dehghan (2015); Jiang et al. (2020) but sample efficiency and exploration were not addressed,
except for learning general equilibria (Chen et al., 2022b). Our work fills this gap by adding built-in
exploration mechanisms under constraints and proving the first non-asymptotic convergence.

Our work is also pertinent to a rich RL literature on learning constrained MDPs (Zheng and
Ratliff, 2020; Qiu et al., 2020; Kalagarla et al., 2020; Bai et al., 2020a; Chow et al., 2017; Tessler
et al., 2019; Ding et al., 2020, 2021, 2022; Wachi and Sui, 2020; Efroni et al., 2020; Brantley et al.,
2020; Chen et al., 2021; Liu et al., 2021a; Ying et al., 2022; Liu et al., 2021b; Bai et al., 2022;
Zhao and You, 2021; Li et al., 2021; Chen et al., 2022a). While these results provide provably
efficient algorithms regarding regret and constraint satisfaction in the single-agent setting, they are
not applicable to our multi-agent game being played under constraints, because of the non-convexity
nauture of constrained multi-agent policy optimization and the non-stationary environment each
agent is facing. An extended line of work on constrained MDPs focuses on cooperative multi-agent
learning under constraints and most efforts study the case where multiple agents have independent
MDPs with a coupled budget/resource constraint (Meuleau et al., 1998; Boutilier and Lu, 2016; Wei
et al., 2018; de Nijs and Stuckey, 2020; Gagrani and Nayyar, 2020). All these results assume knowing
transition models or system dynamics. Only a few studies considered the shared MDP case (Diddigi
et al., 2019; Lu et al., 2020; Parnika et al., 2021; Gu et al., 2021), but they lack theoretical guarantees
and do not handle exploration. In contrast, our work focuses on the MG setting with unknown models
and attacks the exploration challenge directly.

2. Problem Setup

In this section, we introduce zero-sum Markov games (MGs) with constraints, which are categorized
as constrained Markov/stochastic games (Altman and Shwartz, 2000; Altman et al., 2005, 2008).

In an episodic constrained MG there are two players; a min-player – (X,A,P1, r, g, T ), which
minimizes the reward, and a max-player – (Y,B, P2, r, h, T ), which maximizes the reward, while
adhering to a coupled utility constraint. Here, T is the number of episodes, X and Y are finite
state spaces, A and B are finite action spaces, P1 and P2 are transition probability measures where
P1(· |x, a) is a distribution over X if the min-player takes action a in state x and P2(· | y, b) is a
distribution over Y if the max-player takes action b in state y, r := {rt}Tt= 1 is a collection of players’
reward functions rt: X × Y × A × B → [0, 1], whereas g := {gt}Tt= 1 and h := {ht}Tt= 1 are
collections of players’ utility functions gt: X×A→ [0, 1], ht: Y ×B → [0, 1]. For two independent
transitions, players are coupled via the reward function and a constraint on their utility functions.

We utilize layered Markov decision processes to model the environment dynamics. For each
player, e.g., the min-player, we assume that the state space X has L+ 1 layers and that it satisfies
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the loop-free property: (i) X := X0 ∪ · · · ∪XL and X`1 ∩X`2 = ∅ for `1 6= `2; (ii) X0 = {x0} and
XL = {xL}; (iii) if P1(x′ |x, a) > 0, then x′ ∈ X`+1 and x ∈ X` for some ` ∈ {0, 1, · · · , L}. This
assumption is common in loop-free stochastic shortest path problems (György et al., 2007; Jaksch
et al., 2010; Neu et al., 2010; Rosenberg and Mansour, 2019; Jin et al., 2020); it is often used to
simplify notation/analysis since any episodic MDPs can be reduced to be loop-free.

The min/max players interact with the environment in episode t as follows. At the beginning, the
environment determines the reward function rt and the utility functions gt and ht. Meanwhile, two
players decide their policies πt: X×A→ [0, 1] and µt: Y ×B → [0, 1], where πt(· |x) and µt(· | y)
are probability distributions over their action spaces A and B, respectively. Then, given initial states
x0 and y0, both players execute their own policies πt or µt for L steps. At step ` ∈ {0, . . . , L− 1},
each player only observes its own state x` ∈ X or y` ∈ Y , takes action a` or b` following its own
policy πt or µt, transits to next state x`+1 or y`+1 according to its own transition P1(· |x`, a`) or
P2(· | y`, b`), and observes reward rt and local utility gt or ht. Assume there is no dependence
between functions rt, gt, and ht and they are independent of the underlying MDPs.

To define the learning objective, for the min-player in episode t we introduce the occupancy
measure qt1: X × A × X → [0, 1] by qt1(x, a, x′) := Prob(x` = x, a` = a, x`+1 = x′) for
x ∈ X`, describing the marginal probability of visiting (x, a, x′) when executing policy πt under
the transition P1. Similarly, we introduce the occupancy measure qt2: Y × B × Y → [0, 1] for
the max-player. We recall that a function q: X × A × X → [0, 1] is an occupancy measure
associated with policy π and transition P if and only if it satisfies two conditions (Altman, 1999): (i)∑

x∈X`
∑

a∈A
∑

x′∈X`+1
q(x, a, x′) = 1 for ` ∈ {0, . . . , L− 1}; (ii)

∑
x∈X`−1

∑
a∈A q(x, a, x

′) =∑
a∈A

∑
x′′∈X`+1

q(x′, a, x′′) for x′ ∈ X` and ` ∈ {1, . . . , L − 1}. We denote by ∆(P ) a set of
valid occupancy measures under P ,

∆(P ) :=
{
q :X ×A×X → [0, 1] | q satisfies (i) and (ii) as shown above

}
.

It is worth noting that the occupancy measure set is convex and compact for finite MDPs (Altman,
1999). Using an occupancy measure q, we can express associated transition P and policy π as

P (x′ |x, a) =
q(x, a, x′)∑

x′′ ∈X`+1
q(x, a, x′′)

and π(a |x) =

∑
x′ ∈X`+1

q(x, a, x′)∑
a∈A

∑
x′′ ∈X`+1

q(x, a, x′′)
(1)

where x ∈ X`. Slightly extending the notation q, we use it to represent the probability of visiting
(x, a), i.e., q(x, a) =

∑
x′ ∈X`+1

q(x, a, x′) for x 6= xL. These properties imply that the problem of
learning a policy equals learning the associated occupancy measure (Zimin and Neu, 2013).

In episode t, given a min-policy πt and a max-policy µt, we introduce the expected total reward,

EP1,P2,πt,µt

[
L−1∑
`= 0

rt(x`, y`, a`, b`)

]
=

L−1∑
`= 0

∑
x∈X`, y ∈Y`

∑
a∈A, b∈B

qt1(x, a)qt2(y, b)rt(x, y, a, b)

:=
〈
qt1 · qt2, rt

〉
(2)

where the expectation E is taken over the random state-action sequence {(x`, y`, a`, b`)}L−1
`= 0; the

action a` follows the policy πt(· |x`) in the state x` and the next state x`+1 follows the transition
P1(· |x`, a`); the action b` follows the policy µt(· | y`) in the state y` and the next state y`+1 follows
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the transition P2(· | y`, b`). Similarly, we can define the expected total utilities as

EP1,πt

[
L−1∑
`= 0

gtx(x`, a`)

]
=

L−1∑
`= 0

∑
x∈X`

∑
a∈A

qt1(x, a)gt(x, a) :=
〈
qt1, g

t
〉

(3a)

EP2,µt

[
L−1∑
`= 0

ht(y`, a`)

]
=

L−1∑
`= 0

∑
y ∈Y`

∑
b∈B

qt2(y, b)ht(y, b) :=
〈
qt2, h

t
〉
. (3b)

In general, reward function rt and utility functions gt and ht all can change arbitrarily, i.e.,
being adversarial. However, even if we fix the opponent’s policy, there is no algorithm for the
player to achieve sublinear regret and constraint violation at the same time when the constraints are
changing adversarially (Mannor et al., 2009). Hence, we restrict the utility functions to be stochastic:
gt(x, a) := g(x, a; ξt), ht(y, b) := h(y, b; ξt) with E

[
gt(x, a)

]
= g(x, a) and E

[
ht(y, b)

]
=

h(y, b), for any x ∈ X , a ∈ A and y ∈ Y , b ∈ B, where ξt is an independent random variable.
Learning Performance. We now define the underlying constrained optimization problem and the
solution concept for learning constrained MGs. Using the notion of occupancy measure, we formulate
a constrained minimax problem in which the objective function is a sum of the expected total rewards
over T episodes and the constraint is on a sum of two agent’ expected total utilities,

minimize
q1 ∈∆(P1)

maximize
q2 ∈∆(P2)

T−1∑
t= 0

〈
q1 · q2, r

t
〉

subject to 〈q1, g〉 + 〈q2, h〉 ≤ b (4)

where we take b ∈ (0, 2L] to avoid trivial cases since we note that 〈q1, g〉, 〈q2, h〉 ∈ [0, L]. The
coupled constraint is used to model the limited use of budget/resource for two players; multi-agent
problems with a common constraint are often called weakly-coupled or non-orthogonal in the
literature on CMDPs (Meuleau et al., 1998; Boutilier and Lu, 2016; Wei et al., 2018; Salemi Parizi,
2018; Gagrani and Nayyar, 2020) and constrained MGs (Altman et al., 2008; Altman and Solan,
2009; Kulkarni, 2011; Singh and Hemachandra, 2014; Kulkarni, 2017). We can generalize it to
account for multiple constraints or local side constraints, e.g., 〈q1, g〉 ≤ b1 or 〈q2, h〉 ≤ b2. When
transitions P1 and P2 are known, the occupancy measure sets ∆(P1) and ∆(P2) define convex
polytopes on q1 and q2.

Let (q?1, q
?
2) be a solution to Problem (4) in hindsight. The existence of (q?1, q

?
2) follows from

compactness of the constraint sets (Neumann, 1928; Rosen, 1965). It is standard to define an intuitive
solution – constrained Nash equilibrium – via two conditions (Altman and Shwartz, 2000; Daskalakis
et al., 2021):

(i)
T−1∑
t= 0

〈q?1 · q?2, rt〉 ≤
T−1∑
t= 0

〈q1 · q?2, rt〉 for any q1 ∈ ∆(P1) satisfying 〈q1, g〉+ 〈q?2, h〉 ≤ b;

(ii)
T−1∑
t= 0

〈q?1 · q2, r
t〉 ≤

T−1∑
t= 0

〈q?1 · q?2, rt〉 for any q2 ∈ ∆(P2) satisfying 〈q?1, g〉+ 〈q2, h〉 ≤ b.

Any unilateral deviation from the constrained Nash equilibrium will either break the constraint or if
it is not, then there is no benefit for this player. With this solution concept, we define the regret for
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any algorithm that plays the game for T episodes by

Regret(T ) =
T−1∑
t= 0

(〈
qt1 · q?2, rt

〉
−
〈
q?1 · qt2, rt

〉)
(5)

which adds two side optimality gaps,
∑T−1

t= 0

〈
qt1 · q?2, rt

〉
−
〈
q?1 · q?2, rt

〉
for the min-player and∑T−1

t= 0〈q?1 · q?2, rt〉 − 〈q?1 · qt2, rt〉 for the max-player, and two players take policies πt and µt in
episode t and they define occupancy measures qt1 and qt2 under the true transitions P1 and P2. This
regret works in a notion of weak regret (Brafman and Tennenholtz, 2002; Bai and Jin, 2020; Xie
et al., 2020) instead of the single-agent type regret (Tian et al., 2020; Bai et al., 2020b) which is
statistically and computationally hard to bound sublinearly.

To measure the constraint satisfaction, we introduce the violation as a non-negative part of
accumulated constraint violations 〈qt1, g〉+ 〈qt2, h〉 − b over T episodes,

Violation(T ) =

[
T−1∑
t= 0

(〈
qt1, g

t
〉

+
〈
qt2, h

t
〉
− b
)]

+

. (6)

We next make an assumption that guarantees the existence of constrained Nash equilibrium (Alt-
man and Shwartz, 2000).

Assumption 1 (Feasibility) There exists a joint policy (π̄, µ̄) associated to the occupancy measure
(q̄1, q̄2) and a constant ξ > 0 such that 〈q̄1, g〉+ 〈q̄2, h〉+ ξ ≤ b.

Having defined the learning performance, we will work with the occupancy measure in the
online learning setting where the two players do not know the transition functions, only observe
reward/utility functions at the end of each episode, repeatedly play the game for a fixed number of
episodes to learn the constrained Nash equilibrium in hindsight.

3. Proposed Algorithm

We present a variant of upper confidence reinforcement learning in Algorithm 1 – an Upper
Confidence Bound Constrained SAddle-Point Optimization (UCB-CSAPO) algorithm – for learning
constrained MGs. Conceptually, the algorithm works as the primal-dual policy optimization (Efroni
et al., 2020; Ding et al., 2021; Chen et al., 2021) in the Lagrangian-based framework, which makes it
a simple policy optimization algorithm. However, our primal update exploits the structure of con-
strained MGs to maintain two players’ occupancy measures. The domain set of occupancy measures
builds on the upper confidence bound exploration or optimism (Jaksch et al., 2010) regarding the
estimated transition models using past trajectories. The dual update determines the penalty weight by
collecting the possible constraint violation already acquired. In each episode, our algorithm has two
key stages: (i) The generalized Lagrangian mirror descent step for updating the occupancy measures
with optimism; (ii) The estimation of confidence sets on the occupancy measures.
The Generalized Lagrangian Mirror Descent Step. The main idea of this step is to apply the
online primal-dual mirror descent – an algorithmic generalization of online mirror descent to the
constrained problems (Wei et al., 2020) – to the constrained MG setting (Altman and Shwartz, 2000;
Altman et al., 2005, 2008; Singh and Hemachandra, 2014). Let us recall that the occupancy measures
qt1 for the min-player and qt2 for the max-player are defined over the true transitions P1 and P2 in
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Algorithm 1 Upper Confidence Bound Constrained SAddle-Point Optimization (UCB-CSAPO)
1: Input: State/action spaces (X,A) and (Y,B), episode T , parameters V , η, θ, and p ∈ (0, 1).
2: Initialization: The min-player: q̂ 0

1 (x, a, x′) = 1
|X`||A||X`+1| , ∀(x, a, x

′) ∈ X`×A×X`+1, ` ∈
[0, L−1]; n1

1(x, a) = N1
1 (x, a) = 0, ∀(x, a); m1

1(x, a, x′) = M1
1 (x, a, x′) = P̄ 1

1 (x′ |x, a) = 0,
∀(x, a, x′).
The max-player: q̂ 0

2 (y, b, y′) = 1
|Y `||B||Y `+1| , ∀(y, b, y

′) ∈ Y ` × B × Y `+1, ` ∈ [0, L − 1];
n1

2(y, b) = N1
2 (y, b) = 0, ∀(y, b); m1

2(y, b, y′) = M1
2 (y, b, y′) = P̄ 1

2 (y′ | y, b) = 0, ∀(y, b, y′).
Let r0, g0, h0 be zero functions, λ0 be zero, and k1

1 = k1
2 = 1.

3: for episode t = 1, . . . , T do
4: Update the primal variable q̂ t via (8) and the dual variable λt via (10).
5: Compute the min-policy πt and the max-policy µt via (7). Execute them for L steps and record

trajectories (x0, a0, x1, · · · , aL−1, xL−1) and (y0, b0, y1, · · · , bL−1, yL−1), and reward/utility
functions rt, gt, and ht.

6: Update local visitation counters at visited trajectories,

n
kt1
1 (x`, a`) ← n

kt1
1 (x`, a`) + 1 and m

kt1
1 (x`, a`, x`+1) ← m

kt1
1 (x`, a`, x`+1) + 1

n
kt2
2 (y`, b`) ← n

kt2
2 (y`, b`) + 1 and m

kt2
2 (y`, b`, y`+1) ← m

kt2
2 (y`, b`, y`+1) + 1.

7: if n
kt1
1 (x, a) ≥ N

kt1
1 (x, a) or nk

t
2

2 (y, b) ≥ N
kt2
2 (y, b) for some (x, a) ∈ X × A or (y, b) ∈

Y ×B then
8: Increase epoch counter by one, kt+1

1 ← kt1 + 1 or kt+1
2 ← kt2 + 1, and update global

visitation counters,

N
kt+1
1

1 (x, a) ← N
kt1
1 (x, a) + n

kt1
1 (x, a) or Nkt+1

2
2 (y, b) ← N

kt2
2 (y, b) + n

kt2
2 (y, b)

M
kt+1
1

1 (x, a, x′)←M
kt1
1 (x, a, x′)+m

kt1
1 (x, a, x′) or Mkt+1

2
2 (y, b, y′)←M

kt2
2 (y, b, y′)+m

kt2
2 (y, b, y′).

Update the confidence bounds for ∆(kt1) or ∆(kt2) in (11), and set nk
t+1
1

1 (x, a) =

m
kt+1
1

1 (x, a, x′) = 0 for all (x, a) and (x, a, x′) or nk
t+1
2

2 (y, b) = m
kt+1
2

2 (y, b, y′) = 0
for all (y, b) and (y, b, y′).

9: else
10: Set either kt+1

1 = kt1 or kt+1
2 = kt2.

11: end if
12: end for

episode t. The primal update of our algorithm maintains two occupancy measures q̂ t1 , q̂ t2 to estimate
qt1, qt2, separately. Although q̂ t1 , q̂ t2 do not necessarily come from the true transitions P1, P2, they
propose a min-policy πt for the min-player and a max-policy µt for the max-player according to the
occupancy measure’s property (1), i.e., for all (x, a) ∈ X ×A and (y, b) ∈ Y ×B,

πt(a |x) =

∑
x′
q̂ t1(x, a, x′)∑

a,x′′
q̂ t1(x, a, x′′)

and µt(b | y) =

∑
y′
q̂ t2(y, b, y′)∑

b,y′′
q̂ t2(y, b, y′′)

. (7)
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We describe our Lagrangian-based design to update estimates q̂ t1 and q̂ t2 in an online fashion.
Assume that the transitions P1 and P2 are known. We consider a one-episode constrained minimax
problem based on reward/utility functions: rt−1, gt−1, ht−1, revealed at the end of episode t− 1,

minimize
q1 ∈∆(P1)

maximize
q2 ∈∆(P2)

〈
q1 · q2, r

t−1
〉

subject to
〈
q1, g

t−1
〉

+
〈
q2, h

t−1
〉
≤ b

where ∆(P1) and ∆(P2) are sets of valid occupancy measures under P1 and P2, respectively.
It is standard to use the method of Lagrange multipliers (Bertsekas, 2014) to handle constraints by

adding penalty terms, if any constraint violation appears, into the original objective, and formulate an
unconstrained problem. This is found in constrained games with separate side constraints (Pearsall,
1976) and multiple MDPs with coupled constraints (Boutilier and Lu, 2016; Wei et al., 2018).
However, for constrained MGs either player can contribute to constraint violation 〈q1, g

t−1〉 +
〈q2, h

t−1〉 − b. It is important to specify which player should get such penalty terms (Altman and
Solan, 2009; Dai and Zhang, 2020). We employ an attitude that the two players are jointly against the
constraint while competing for rewards (Altman and Solan, 2009). As a result, both would sacrifice
their rewards to satisfy the constraint if any violation occurs. We approximate the violation for each
player as: 〈q1, g

t−1〉 + 〈q̂ t2 , ht−1〉 − b for the min-player, and 〈q̂ t1 , gt−1〉 + 〈q2, h
t−1〉 − b for the

max-player. We formulate a generalized Lagrangian-type function,

Lt(q1, q2;λ) := 〈q1 · q2, r
t−1〉

+λ
(
〈q1, g

t−1〉+ 〈q̂ t2 , ht−1〉 − b
)
− λ

(
〈q̂ t1 , gt−1〉+ 〈q2, h

t−1〉 − b
)

where q1 is the first primal variable for the min-player, q2 is the second primal variable for the
max-player, and λ ≥ 0 works as the Lagrange multiplier or the dual variable in penalizing the min-
player/max-player via the first/second λ-term. Once we update λ = λt−1 from the last episode, we
reach a constrained saddle-point problem, minimizeq1 ∈∆(P1) maximizeq2 ∈∆(P2) L

t(q1, q2;λt−1).
However, it is not feasible to take the domains ∆(P1) and ∆(P2) since the true transitions P1

and P2 are unknown. Instead, by the optimism in the face of uncertainty, we use their optimistic
estimates ∆(kt1) and ∆(kt2) in sense that qt1 ∈ ∆(kt1) and qt2 ∈ ∆(kt2) hold with high probability
in Lemma 1, where ∆(kt1) and ∆(kt2) are given by (11). Let q̂ t := (q̂ t1 , q̂

t
2) and D(p | q) :=∑

i pi ln pi
qi
−
∑

i(pi − qi) that is the unnormalized Kullback-Leibler (KL) divergence between two
distributions p, q. By a linear approximation of Lt(q1, q2;λt−1) at the previous iterate (qt−1

1 , qt−1
2 ),

we update the primal variable via an online mirror descent step over the domains of q1 and q2,

q̂ t ← argmin
q1 ∈∆(kt1)

argmax
q2 ∈∆(kt2)

(
V
〈
q1 · q̂ t−1

2 + q̂ t−1
1 · q2, r

t−1
〉

+λt−1
(
〈q1, g

t−1〉 − 〈q2, h
t−1〉

)
+ η−1D

(
q | q̃ t−1

)) (8)

where V > 0 provides the tradeoff between the minimax objective and the constraint, η > 0 is the
learning rate, D(· | ·) is the unnormalized Kullback-Leibler divergence with a slightly abuse in a way
that D(q | q′) := D(q1 | q′1)−D(q2 | q′2), q̃ t−1

1 and q̃ t−1
2 are mixing policies, e.g.,

q̃ t−1
1 (x, a) = (1− θ) q̂ t−1

1 (x, a) + θ
1

|X`||A|
(9)

for (x, a) ∈ X` × A, ` ∈ {0, 1, . . . , L − 1}, θ ∈ (0, 1]. The mixing step ensures the uniform
boundedness of KL divergence and also adds extra exploration into policy search (Wei et al., 2020).
Moreover, we offer an efficient implementation of (8) as solving a convex program in Appendix 8.
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Once we obtain q̂ t, we next perform the dual update. If we treat two λ-related regularization
terms in Lt(q̂ t1 , q̂

t
2 ;λ) separately, then gradient ascent/descent over either λ leads to the same update

rule using the constraint violation 〈q̂ t1 , gt−1〉+ 〈q̂ t2 , ht−1〉 − b. Hence, the dual update works in the
usual way by adding up all past constraint violations,

λt = max
(
λt−1 + (〈q̂ t1 , gt−1〉+ 〈q̂ t2 , ht−1〉 − b ), 0

)
. (10)

The dual update (10) increases λt−1 when q̂ t violates the approximate constraint 〈q1, g
t−1〉 +

〈q2, h
t−1〉 ≤ b. It penalizes both players by yielding individual gains to the constraint satisfaction.

The dual update finds uses in constrained optimization (Wei et al., 2020) and constrained MDP
problems (Efroni et al., 2020; Ding et al., 2021).
The Estimation of Confidence Sets. To deal with unknown transitions P1 and P2, we employ the
upper confidence bound (Jaksch et al., 2010; Neu et al., 2010) to estimate occupancy measure sets
∆(P1), ∆(P2). We exploit players’ history trajectories to estimate their true transitions: P1, P2, and
describe estimation uncertainty as confidence sets. The estimation proceeds in epochs as follows.

Let the epoch index for the min-player be k1 ∈ {1, 2, . . .} and the epoch index for the max-player
be k2 ∈ {1, 2, . . .}. We may represent them by kt1 and kt2 for showing the dependence on episode
t. The epoch counters work in the following way. For each player, e.g., the min-player, we denote
by Nk1

1 (x, a) and Mk1
1 (x, a, x′) the total numbers of visitations to (x, a) and (x, a, x′) before epoch

k1, respectively; we represent the total numbers of visitations to (x, a) and (x, a, x′) in epoch k1

by nk11 (x, a) and mk1
1 (x, a, x′), respectively; If there exists (x, a) such that nk11 (x, a) ≥ Nk1

1 (x, a),
then we set a new epoch by increasing k1 by one. Similarly, we define Nk2

2 (y, b), Mk2
2 (y, b, y′),

nk22 (y, b), and mk2
2 (y, b, y′) for the max-player. Using the defined epoch and visitation counters, we

empirically estimate the true transitions P1 or P2 in epoch k1 or k2 by

P̄ k11 (x′ |x, a) =
Mk1

1 (x, a, x′)

max(1, Nk1
1 (x, a))

and P̄ k22 (y′ | y, b) =
Mk2

2 (y, b, y′)

max(1, Nk2
2 (y, b))

for all (x, a, x′) ∈ X ×A×X and (y, b, y′) ∈ Y ×B × Y .
Let the confidence set of epoch k1 for the min-player be Pk11 and the confidence set of epoch k2

for the max-player be Pk22 . We take Pk11 and Pk22 as collections of transitions that deviate from the
empirical ones at most εk11 and εk22 ,

Pk11 =
{
P̂1

∣∣ ‖P̂1(· |x, a)− P̄ k11 (· |x, a)‖1 ≤ εk11 ,∀(x, a)
}

Pk22 =
{
P̂2

∣∣ ‖P̂2(· | y, b)− P̄ k22 (· | y, b)‖1 ≤ εk22 , ∀(y, b)
}

where we take εk11 (x, a) =

√
2|X`(x)+1| log(T |A||X|/δ)

max(1,N
k1
1 (x,a))

and εk22 (y, b) =

√
2|Y`(y)+1| log(T |B||Y |/δ)

max(1,N
k2
2 (y,b))

, `(x)

and `(y) are the layers that certain states belong to, and δ ∈ (0, 1). We recall the occupancy measure
sets ∆(P1) or ∆(P2) that are induced by the true transitions P1 or P2. We generalize this notion to

define ∆(Pk
t
1

1 ) or ∆(Pk
t
2

2 ) as collections of all possible occupancy measures that are induced by the
estimated transitions P̂1 ∈ Pk1 or P̂2 ∈ Pk2 ,

∆(kt1) := ∆(Pk
t
1

1 ) or ∆(kt2) := ∆(Pk
t
2

2 ); see (17) in Appendix 8 for explicit forms. (11)

Lemma 1 Fix δ ∈ (0, 1). With probability 1− δ, ∆(P1) ⊂ ∆(Pk11 ) and ∆(P2) ⊂ ∆(Pk22 ) for all
k1, k2 ∈ {1, 2, . . .}.

9
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The proof of Lemma 1 follows the confidence bound construction; we provide it in Appendix 9.
For all epoch kt1 or kt2 (episode t), the true transitions P1 and P2 are contained in Pk

t
1

1 and Pk
t
2

2 ,
respectively, with high probability. This supports the primal update (8) such that both players are
optimistically searching solutions in a large but tractable domain.

4. Performance Guarantees

In Theorem 2, we present our main theoretical result on the regret and the constraint violation for
Algorithm 1. We recall the total number of games played by the algorithm T , the size of state/action
spaces of the min-player |X|, |A|, and the size of state/action spaces of the max-player |Y |, |B|.

Theorem 2 (Regret Bound and Constraint Violation) Let Assumption 1 hold. Fix p ∈ (0, 1) and
T ≥ max(|X||A|, |B||Y |). In Algorithm 1, we set V = L

√
T , η = 1/(TL), and θ = 1/T . Then,

with probability 1− p, the regret (5) and the constraint violation (6) satisfy

Regret(T ), Violation(T ) ≤ Õ
(

(|X|+ |Y |)L
√
T (|A|+ |B|)

)
where Õ(·) hides the logarithmic factor log 1

p .

In Theorem 2, we prove that UCB-CSAPO enjoysO(
√
T ) regret andO(

√
T ) constraint violation

using appropriate algorithm parameters {V, η, θ, p} and Assumption 1; see Appendix 7 for proof.
Our bounds have the optimal dependence on the total number of episodes T up to some logarithmic
factors. The

√
|A|+ |B| dependence matches the existing lower bound for the single-player case (Bai

and Jin, 2020). The only suboptimal dependence comes from |X|, |Y | that also exists in existing
unconstrained loop-free stochastic shortest path problems (Rosenberg and Mansour, 2019). It is
straightforward to remove knowledge of T by using the doubling trick while not altering our bounds
up to logarithmic factors (Rakhlin and Sridharan, 2013).

We see that Assumption 1 does not impose any restrictions on rewards. Hence, UCB-CSAPO
is robust against adversarial reward functions. Moreover, Theorem 2 carries to other settings, e.g.,
constrained MGs with side constraints; see Appendix 14.

5. Concluding Remarks

We have examined an episodic two-player zero-sum constrained Markov game (MG) with indepen-
dent transition functions. In our setup, transition functions are unknown to agents, reward functions
are adversarial, and utility functions are stochastic. We have proposed the first provably efficient
algorithm for playing constrained MGs with O(

√
T ) regret and constraint violation. Our algorithm

provides a principled extension of the upper confidence reinforcement learning to deal with coupled
constraints in constrained MGs. We also remark that the developed algorithmic framework can be
readily applied to learning other constrained MGs, e.g., the ones that involve a single controller.

Our work opens up many interesting directions for future work, such as sharper algorithms
with sample complexity lower bounds, constrained rational algorithms, and how to perform safe
exploration in other models of constrained MGs.
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6. Related Work

Safety constraints have gained increasing attention in the literature on multi-agent reinforcement
learning (RL); see surveys (Busoniu et al., 2008; Buşoniu et al., 2010; Zhang et al., 2021; Oroojlooy-
Jadid and Hajinezhad, 2019; Yang and Wang, 2020; Schmidt et al., 2022). We first discusss some
related work in framework of Markov games (MGs) (Shapley, 1953; Littman, 1994).
Constrained MGs. Our work is closely related to safe multi-agent RL in constrained MGs. The con-
strained MGs generalize constrained MDPs (Altman, 1999) to multiple agents and Markov/stochastic
games (Shapley, 1953; Littman, 1994) to account for constraints. The Nash equilibrium for con-
strained MGs have been studied in Altman and Shwartz (2000); Gómez-Ramırez et al. (2003); Altman
et al. (2005); Alvarez-Mena and Hernández-Lerma (2006); Altman et al. (2007, 2008); Altman and
Solan (2009); Singh and Hemachandra (2014) using the notion of constrained Nash equilibrium
(which generalizes the concept of generalized Nash equilibrium in static games (Arrow and Debreu,
1954) to MGs) by assuming some particular transition models and constraints on reward/utility
functions a priori. More general studies include Yaji and Bhatnagar (2015); Zhang (2019); Wei
(2020, 2021); Zhang and Zou (2021). These results are not applicable to the RL setting where
transition models and reward/utility functions are unknown, and only a finite number of samples are
available. Recently, asymptotic convergence in learning constrained MGs was examined in Hakami
and Dehghan (2015); Jiang et al. (2020) but sample efficiency, constraint satisfaction, and exploration
were not addressed, except for learning general equilibria (Chen et al., 2022b). Our development
fills this gap by adding built-in exploration mechanisms under constraints and proving the first
non-asymptotic convergence.
Constrained MDPs. Our work is also pertinent to a rich RL literature on learning unknown
constrained MDPs (Zheng and Ratliff, 2020; Qiu et al., 2020; Kalagarla et al., 2020; Bai et al., 2020a;
Chow et al., 2017; Tessler et al., 2019; Ding et al., 2020, 2021, 2022; Wachi and Sui, 2020; Efroni
et al., 2020; Brantley et al., 2020; Chen et al., 2021; Liu et al., 2021a; Ying et al., 2022; Liu et al.,
2021b; Bai et al., 2022; Zhao and You, 2021; Li et al., 2021; Chen et al., 2022a). While these results
provide provably efficient algorithms regarding regret and constraint satisfaction in the single-agent
setting, they are not applicable to our multi-agent game being played under constraints, because of
the non-convexity nauture of constrained multi-agent policy optimization and the non-stationary
environment each agent is facing. An extended line of work on constrained MDPs focuses on
cooperative multi-agent learning under constraints and most efforts study the case where multiple
agents have independent MDPs with a coupled budget/resource constraint (Meuleau et al., 1998;
Boutilier and Lu, 2016; Wei et al., 2018; de Nijs and Stuckey, 2020; Gagrani and Nayyar, 2020).
All these results assume that transition models or system dynamics are known. Only a few studies
considered the shared MDP case (Diddigi et al., 2019; Lu et al., 2020; Parnika et al., 2021; Gu
et al., 2021), but they either lack of theoretical guarantees or do not handle exploration. In contrast,
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our work focuses on the MG setting with unknown transition models, and attacks the exploration
challenge directly.
Single-agent RL in MDPs & multi-agent RL in MGs. A considerable literature has provided
sample-efficient online RL methods in single-agent and multi-agent unconstrained RL settings; see
recent summaries in Foster et al. (2021); Du et al. (2021); Jin et al. (2021) for single-agent RL
and Jin et al. (2022b,a); Song et al. (2021) for multi-agent RL. However, it is largely open to extend
those sample-efficient online RL methods to constrained MGs due to several technical challenges.
First, since the Bellman optimality fails even in constrained MDPs (Piunovskiy and Mao, 2000;
Borkar, 2005) and the optimal constrained policy is often stochastic (Altman, 1999), value-based
RL methods are not suitable. Second, applying policy-based RL methods often warrants solving
constrained policy optimization problems that are not convex (Achiam et al., 2017; Ding et al., 2020),
not mentioning multi-agent policy optimization problems. Third, designing a sample-efficient online
RL algorithm for constrained MGs has to deal with the fundamental exploitation/exploration tradeoff
under constraints (Efroni et al., 2020; Brantley et al., 2020; Ding et al., 2021). Despite some recent
progress in dealing with each technical issue individually, it is crucial to address them together for
multi-agent RL in constrained MGs. In this work, we offer the first positive answer by identifying a
class of zero-sum constrained MGs, establishing a new policy optimization algorithm with online
exploration for learning such games, and proving near-optimal sample efficiency.

7. Proof Sketch of Theorem 2

Regret Analysis. We recall that our algorithm maintains the occupancy measures (q̂ t1 , q̂
t
2) for

estimating policies (πt, µt) and Problem (4) defines the comparison solution (q?1, q
?
2) in hindsight.

Naturally, we decompose the regret (5) into two side regrets for both players by inserting 〈q?1 · q?2, rt〉.
By the occupancy measures (qt1, q

t
2) associated with (πt, µt) under the true transitions P1 and P2,

we further decompose two side regrets into two terms by inserting 〈q̂ t1 · q?2, rt〉 and 〈q?1 · q̂ t2 , rt〉,
individually. Specifically, we have

Regret(T ) =
T−1∑
t= 0

〈
q̂ t1 · q?2 − q?1 · q̂ t2 , rt

〉
︸ ︷︷ ︸

R̂egret(T )

+
T−1∑
t= 0

〈
(qt1 − q̂ t1) · q?2, rt

〉
︸ ︷︷ ︸

Error1

+
T−1∑
t= 0

〈
q?1 · (q̂ t2 − qt2), rt

〉
︸ ︷︷ ︸

Error2

where R̂egret(T ) depicts a regret of an online primal-dual mirror descent problem, Error1 is the error
of using q̂ t1 for the min-player, and Error2 is the error of using q̂ t2 for the max-player.

We begin with a relatively standard lemma on estimation errors of q̂ t1 , q̂ t2 ; we prove it in
Appendix 10.

Lemma 3 Fix δ ∈ (0, 1). Then, with probability 1− 2δ,

T−1∑
t= 0

∥∥q̂ t1 − qt1∥∥1
≤ O

(
L|X|

√
T |A| log T |X||A|

δ

)
T−1∑
t= 0

∥∥q̂ t2 − qt2∥∥1
≤ O

(
L|Y |

√
T |B| log T |Y ||B|

δ

)
.
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We note that rt ∈ [0, 1], q?2 is a probability distribution, and Error1 =
∑T−1

t= 0

〈
(qt1 − q̂ t1) · q?2, rt

〉
≤∑T−1

t= 0

∥∥qt1 − q̂ t1∥∥1
. Application of Lemma 3 yields the following bounds on Error1 and Error2.

Lemma 4 Fix δ ∈ (0, 1). Then, with probability 1− 2δ,

Error1 ≤ O
(
L|X|

√
T |A| log T |X||A|

δ

)
and Error2 ≤ O

(
L|Y |

√
T |B| log T |Y ||B|

δ

)
.

We next bound R̂egret(T ) by establishing an upper bound in Lemma 5 first that is crucial to our
regret analysis. The proof idea of Lemma 5 is similar to the analysis of online constrained convex
optimization (Yu et al., 2017; Wei et al., 2020). A distinction is that we analyze the primal update (8)
via a new property of KL divergence for the minimax objective; see it in Appendix 11.

Lemma 5 Fix δ ∈ (0, 1). Then, with probability 1− δ,

R̂egret(T ) ≤ V −1
T−1∑
t= 0

λt
(
〈q?1, gt〉+ 〈q?2, ht〉 − b

)
+ (ηV )−1L(1 + θT )

(
log(|X||A|) + log(|Y ||B|)

)
+ (2V −1L+ 4θ + ηV )LT.

Lemma 5 establishes an upper bound relying on a stochastic process of duals {λt, t ≥ 0}.
To analyze this bound, we establish the boundedness of λt in Lemma 6 first. Then, we apply a
general Azuma-Hoeffding inequality for supermartingales in Lemma 7. We delay their proofs to
Appendix 12.

Lemma 6 Let Assumption 1 hold. Fix δ ∈ (0, 1). For any integer t0 > 0, with probability 1− Tδ,

λt ≤ Θ + 2t0L+ t0
64L2

ξ
log

(
128L2

ξ

)
+ t0

64L2

ξ
log

1

δ

for all t = 1, . . . , T , where ξ > 0 and

Θ := t0
(

1
2ξ + 2L

)
+ 4L2+(8θ+2ηV+2)V L

ξ + 2L(log(|X||A|/θ)+log(|Y ||B|/θ))
t0ξη

.

Lemma 7 Let Assumption 1 hold. Fix δ ∈ (0, 1). For any integer t0 > 0, with probability 1− 2Tδ,

T−1∑
t= 0

λt
(
〈q?1, gt〉+ 〈q?2, ht〉 − b

)
≤
√

2Tc2 log(1/(δT ))

where c := 2ΘL+ 4t0L
2 + 128t0L3

ξ

(
log
(

128L2

ξ

)
+ log 1

δ

)
and ξ > 0.

We now ready to conclude a bound on R̂egret(T ) by combining Lemma 7 and Lemma 5.

Theorem 8 Let Assumption 1 hold. Fix T ≥ max(|X||A|, |B||Y |). Let V = L
√
T , η = 1/(TL),

t0 =
√
T , and θ = 1/T . Then, with probability 1− 2Tδ it holds that

R̂egret(T ) ≤ Õ
(
(|X|+ |Y |)L

√
T
)
.
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Proof Using the given parameters V , η, t0, and θ for Lemma 5, R̂egret(T ) is upper bounded by
1

L
√
T

∑T−1
t= 0 λ

t
(
〈q?1, gt〉+〈q?2, ht〉−b

)
+Õ(L

√
T ) with probability 1−δ. We note that Θ ≤ Õ(L2

√
T )

and T ≥ max(|X||A|, |B||Y |). Using parameters in Lemma 7, with probability 1− 2Tδ,

T−1∑
t= 0

λt
(
〈q?1, gt〉+ 〈q?2, ht〉 − b

)
≤ Õ(L3T ).

We complete the proof by noting L ≤ |X|+ |Y |.

We conclude the regret bound in Theorem 2 by combining Lemma 4 and Theorem 8, and
δ = p/(2T ).
Constraint Violation Analysis. We begin with a decomposition using the auxiliary occupancy
measures (qt1, q

t
2). By inserting 〈q̂ t1 , gt〉 and 〈q̂ t2 , ht〉 into Violation(T ), we have

Violation(T ) =

[
T−1∑
t= 0

(〈
q̂ t1 , g

t
〉

+
〈
q̂ t2 , h

t
〉
− b
)]

+︸ ︷︷ ︸
̂Violation(T )

+

T−1∑
t= 0

〈
qt1 − q̂ t1 , gt

〉
︸ ︷︷ ︸

Error3

+

T−1∑
t= 0

〈
qt2 − q̂ t2 , ht

〉
︸ ︷︷ ︸

Error4

.

Similar to Lemma 4, we can prove the following bounds on Error3 and Error4.

Lemma 9 Fix δ ∈ (0, 1). Then, with probability 1− 2δ,

Error3 ≤ O
(
L|X|

√
T |A| log T |X||A|

δ

)
and Error4 ≤ O

(
L|Y |

√
T |B| log T |Y ||B|

δ

)
.

We next bound ̂Violation(T ) by applying the epoch property (Jaksch et al., 2010); see a proof in
Appendix 13.

Theorem 10 Let V = L
√
T , η = 1/(TL), t0 =

√
T , and θ = 1/T . Then,

̂Violation(T ) ≤ λT +
2

T − 1

T∑
t= 1

λt−1 + Õ
(
L
√
T (|X||A|+ |Y ||B|)

)
.

To get the violation bound, we apply Lemma 6 to Theorem 10, use Lemma 9, and take δ =
p/(2T ).

8. Efficient Implementation of (8)

In this section, we provide an efficient implementation for the primal update (8).
Since the minimax objective in the primal update (8) is separable for two players, it is equivalent

to update two occupancy measures individually via

q̂ t1 = argmin
q1 ∈∆(kt1)

V
〈
q1 · q̂ t−1

2 , rt−1
〉

+ λt−1〈q1, g
t−1〉 + η−1D

(
q1 | q̃ t−1

1

)
(12a)

q̂ t2 = argmax
q2 ∈∆(kt2)

V
〈
q̂ t−1

1 · q2, r
t−1
〉
− λt−1〈q2, h

t−1〉 − η−1D
(
q2 | q̃ t−1

2

)
. (12b)
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Note that 〈q1 · q̂ t−1
2 , rt−1〉 = 〈q1, q̂

t−1
2 · rt−1〉 and 〈q̂ t−1

1 · q2, r
t−1〉 = 〈q2, q̂

t−1
1 · rt−1〉. Let

φt−1
1 := V q̂ t−1

2 · rt−1 + λt−1gt−1 and φt−1
2 := −V q̂ t−1

1 · rt−1 + λt−1ht−1.

We can express (12) in a more compact form,

q̂ t1 = argmin
q1 ∈∆(kt1)

η 〈q1, φ
t−1
1 〉 + D

(
q1 | q̃ t−1

1

)
(13a)

q̂ t2 = argmin
q2 ∈∆(kt2)

η 〈q2, φ
t−1
2 〉 + D

(
q2 | q̃ t−1

2

)
(13b)

where we flip the argmax in (12b) to write argmin in (13b) and scale both objectives by multiplying
η > 0.

Now, we state an efficient implementation for the primal update (8) by solving convex optimiza-
tion problems. The proof is based on the method of Lagrange multipliers and the Lagrange duality
theory; they also find uses in the literature (Zimin and Neu, 2013; Rosenberg and Mansour, 2019; Jin
et al., 2020).

Lemma 11 (Efficient Implementation) The primal update (8) is equivalent to

q̂ t1(x, a) =
q̃ t1(x, a)

Zt1,`(β
t
1, µ

+,t
1 , µ−,t1 )

e−B
βt1,µ

+,t
1 ,µ

−,t
1

1,t (x,a,x′) (14a)

q̂ t2(y, b) =
q̃ t2(x, a)

Zt2,`(β
t
2, µ

+,t
2 , µ−,t2 )

e−B
βt2,µ

+,t
2 ,µ

−,t
2

2,t (y,b,y′) (14b)

where Bβ1,µ
+
1 ,µ
−
1

1,t (x, a, x′) and Bβ2,µ
+
2 ,µ
−
2

2,t (y, b, y′) are given by

B
β1,µ

+
1 ,µ
−
1

1,t (x, a, x′) := β1(x′) − β1(x) + ηφt−1
1

+ (1− εk11 (x, a))µ+
1 (x, a, x′) − (1 + εk11 (x, a))µ−1 (x, a, x′)

+
∑

x′′ ∈X`+1

P̄ k11 (x′′ |x, a)(µ−1 (x, a, x′′)− µ+
1 (x, a, x′′))

B
β2,µ

+
2 ,µ
−
2

2,t (y, b, y′) := β2(y′) − β2(y) + ηφt−1
2

+ (1− εk22 (y, b))µ+
2 (y, b, y′) − (1 + εk22 (y, b))µ−2 (y, b, y′)

+
∑

y′′ ∈Y`+1

P̄ k22 (y′′ | y, b)(µ−2 (y, b, y′′)− µ+
2 (y, b, y′′))

and Zt1,`(β1, µ
+
1 , µ

−
1 ) and Zt2,`(β2, µ

+
2 , µ

−
2 ) are given by

Zt1,`(β1, µ
+
1 , µ

−
1 ) =

∑
x∈X`

∑
a∈A

∑
x′∈X`+1

q̃ t1(x, a) e−B
β1,µ

+
1 ,µ
−
1

1,t (x,a,x′)

Zt2,`(β2, µ
+
2 , µ

−
2 ) =

∑
y∈Y`

∑
b∈B

∑
y′∈Y`+1

q̃ t2(y, b) e−B
β2,µ

+
2 ,µ
−
2

2,t (y,b,y′)
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and the dual variables βt1(x), µ+,t
1 (x, a, x′), µ−,t1 (x, a, x′) and βt2(y), µ+,t

2 (y, b, y′), µ−,t2 (y, b, y′)
are the solutions to

βt1, µ
+,t
1 , µ−,t1 = argmin

β1, µ
+
1 , µ

−
1 ≥ 0

L−1∑
`= 0

lnZt1,`(β1, µ
+
1 , µ

−
1 )

βt2, µ
+,t
2 , µ−,t2 = argmin

β2, µ
+
2 , µ

−
2 ≥ 0

L−1∑
`= 0

lnZt2,`(β2, µ
+
2 , µ

−
2 ).

Proof In (13), we have two standard mirror descent problems. Since two problems enjoy the same
structure, we only prove an efficient solution to the first problem (13a).

By the online mirror descent optimization (Zimin and Neu, 2013), Problem (13a) is equivalent to

q̄ t1 = argmin
q1

η 〈q1, φ
t−1
1 〉 + D

(
q1 | q̃ t−1

1

)
and q̂ t1 = argmin

q1 ∈∆(kt1)

D
(
q1 | q̄ t1

)
(15)

where q̄ t1 is a solution to an unconstrained problem and q̂ t1 simply takes the projection of q̄ t1 to the
domain ∆(kt1) in the unnormalized Kullback-Leibler divergence.

It is straightforward to compute a closed-form solution for the unconstrained problem,

q̄ t1(x, a) = q̃ t1(x, a) e−ηφ
t−1
1 (x,a), for all (x, a) ∈ X ×A. (16)

To compute the projection of q̄ t1 , we recall that the domain set ∆(kt1) explicitly takes the following
linear constraints on q1: X ×A→ [0, 1],

∆(kt1) := {q1 : X ×A→ [0, 1] | q1satisfies the following (i), (ii), (iii), (iv)} (17)

(i) q1(x, a) =
∑

x′ ∈X`+1
q1(x, a, x′) for (x, a) ∈ X` ×A and ` ∈ {0, 1, · · · , L− 1};

(ii)
∑

x∈X`
∑

a∈A
∑

x′∈X`+1
q1(x, a, x′) = 1 for ` ∈ {0, 1, · · · , L− 1};

(iii)
∑

x∈X`−1

∑
a∈A q1(x, a, x′) =

∑
a∈A

∑
x′′∈X`+1

q1(x′, a, x′′) for x′ ∈ X` and ` ∈ {1, · · · , L−
1};

(iv) q1(x, a, x′)− P̄ k11 (x′ |x, a)
∑

x′′ ∈X`+1
q1(x, a, x′′) ≤ ε(x, a, x′),

P̄ k11 (x′ |x, a)
∑

x′′ ∈X`+1
q1(x, a, x′′)− q1(x, a, x′) ≤ ε(x, a, x′),

and
∑

x′ ∈X`+1
ε(x, a, x′) ≤ εk11 (x, a)

∑
x′ ∈X`+1

q1(x, a, x′) for (x, a, x′) ∈ X` ×A×X`+1

and ` ∈ {0, 1, · · · , L− 1}.

where (ii) and (iii) follow the occupancy measure’s property and (iv) displays the confidence set
condition for q1 ∈ ∆(kt1),∥∥∥∥∥ q1(x, a, ·)∑

x′′ ∈X`+1
q1(x, a, x′′)

− P̄ k11 (· |x, a)

∥∥∥∥∥
1

≤ εk11 (x, a), for all (x, a) ∈ X ×A
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and we also introduce ε: X ×A×X → [0,∞) additionally. Therefore, the projection problem is a
convex optimization with the linear constraints. By the method of Lagrange multipliers, we have the
following Lagrangian L(q1, ε;α, λ, β, µ

+, µ−, µ),

L(q1, ε;α, λ, β, µ
+, µ−, µ)

= D
(
q1 | q̄ t1

)
+

L−1∑
`= 0

∑
x∈X`

∑
a∈A

α(x, a)

q1(x, a)−
∑

x′ ∈X`+1

q1(x, a, x′)


+

L−1∑
`= 0

λ`

∑
x∈X`

∑
a∈A

∑
x′∈X`+1

q1(x, a, x′)− 1


+

L−1∑
`= 1

∑
x′ ∈X`

β(x′)

 ∑
x∈X`−1

∑
a∈A

q1(x, a, x′)−
∑
a∈A

∑
x′′∈X`+1

q1(x′, a, x′′)


+

L−1∑
`= 0

∑
x∈X`

∑
a∈A

∑
x′ ∈X`+1

µ+(x, a, x′)

q1(x, a, x′)− P̄ k11 (x′ |x, a)
∑

x′′ ∈X`+1

q1(x, a, x′′)− ε(x, a, x′)


+

L−1∑
`= 0

∑
x∈X`

∑
a∈A

∑
x′ ∈X`+1

µ−(x, a, x′)

P̄ k11 (x′ |x, a)
∑

x′′ ∈X`+1

q1(x, a, x′′)− q1(x, a, x′)− ε(x, a, x′)


+

L−1∑
`= 0

∑
x∈X`

∑
a∈A

µ(x, a)

 ∑
x′ ∈X`+1

ε(x, a, x′)− εk11 (x, a)
∑

x′ ∈X`+1

q1(x, a, x′)


where α(x, a), λ`, β(x), µ+(x, a, x′) ≥ 0, µ−(x, a, x′) ≥ 0, and µ(x, a, x′) ≥ 0 for (x, a, x′) ∈
X` ×A×X`+1 are Lagrange multipliers associated to the linear constraints.

By the Lagrange duality theory, the strong duality holds. To find the optimal solution to the
projection problem in (15), it suffices to check the first-order stationary conditions. We first take the
derivative over ε(x, a, x′) for (x, a, x′) ∈ X` ×A×X`+1,

∂L
∂ε(x, a, x′)

= −µ+(x, a, x′) − µ−(x, a, x′) + µ(x, a)
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which is zero if we take µ(x, a) = µ+(x, a, x′) + µ−(x, a, x′). Using this stationary condition, we
simplify the Lagrangian L(q1, ε;α, λ, β, µ

+, µ−, µ) by eliminating µ and ε into,

L(q1;α, λ, β, µ+, µ−)

= D
(
q1 | q̄ t1

)
+

L−1∑
`= 0

∑
x∈X`

∑
a∈A

α(x, a)

q1(x, a)−
∑

x′ ∈X`+1

q1(x, a, x′)


+

L−1∑
`= 0

λ`

∑
x∈X`

∑
a∈A

∑
x′∈X`+1

q1(x, a, x′)− 1


+

L−1∑
`= 1

∑
x′ ∈X`

β(x′)

 ∑
x∈X`−1

∑
a∈A

q1(x, a, x′)−
∑
a∈A

∑
x′′∈X`+1

q1(x′, a, x′′)


+

L−1∑
`= 0

∑
x∈X`

∑
a∈A

∑
x′ ∈X`+1

µ+(x, a, x′)

(1− εk11 (x, a))q1(x, a, x′)− P̄ k11 (x′ |x, a)
∑

x′′ ∈X`+1

q1(x, a, x′′)


+

L−1∑
`= 0

∑
x∈X`

∑
a∈A

∑
x′ ∈X`+1

µ−(x, a, x′)

P̄ k11 (x′ |x, a)
∑

x′′ ∈X`+1

q1(x, a, x′′)− (1 + εk11 (x, a))q1(x, a, x′)

 .

For the notational simplicity, we take β(x0) = β(xL) = 0. We next check the first-order
stationary conditions of L(q1;α, λ, β, µ+, µ−) and solve them for the stationary point. We first take
the derivative over q1(x, a, x′) and q1(x, a) for (x, a, x′) ∈ X` ×A×X`+1, respectively,

∂L
∂q1(x, a, x′)

= −α(x, a) + λ` + β(x′)− β(x)

+ (1− εk11 (x, a))µ+(x, a, x′) − (1 + εk11 (x, a))µ−(x, a, x′)

+
∑

x′′ ∈X`+1

P̄ k11 (x′′ |x, a)(µ−(x, a, x′′)− µ+(x, a, x′′))

∂L
∂q1(x, a)

= ln q1(x, a) − ln q̄ t1(x, a) + α(x, a).

By setting the second derivative above to be zero, we have α(x, a) = − ln q1(x, a) + ln q̄ t1(x, a).
Then, substituting it into the first zero-derivative by eliminating α(x, a) yields,

ln q1(x, a) = ln q̄ t1(x, a) + ηφt−1
1 (x, a) − λ` −Bt(x, a, x′)

Bt(x, a, x′) = β(x′)− β(x) + ηφt−1
1 (x, a)

+ (1− εk11 (x, a))µ+(x, a, x′) − (1 + εk11 (x, a))µ−(x, a, x′)

+
∑

x′′ ∈X`+1

P̄ k11 (x′′ |x, a)(µ−(x, a, x′′)− µ+(x, a, x′′)).

The solution q?1(x, a) leads to an explicit formula for q̂ t1 ,

q̂ t1(x, a) = q?1(x, a) = q̄ t1(x, a) eηφ
t−1
1 (x,a)−λ`−Bt(x,a,x′) = q̃ t1(x, a) e−λ`−B

t(x,a,x′) (18)
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where the last equality is due to (16) and x 6= xL. We note that it is not unique to determine α(x, a)
since it takes the form α?(x, a) = −ηφt−1

1 (x, a) + λ` + Bt(x, a, x′) for some x′. It remains to
determine the optimal β, µ+, and µ−.

Bofore showing the optimal β, µ+, and µ−, we take another derivative over λ` at q1 = q̂t1 and
set it to be zero, ∑

x∈X`

∑
a∈A

∑
x′∈X`+1

q̂ t1(x, a, x′) = 1

or, equivalently,
eλ` =

∑
x∈X`

∑
a∈A

∑
x′∈X`+1

q̃ t1(x, a) e−B
t(x,a,x′) := Zt`

which shows that λ?` = lnZt` . It also leads to α?(x, a) = −ηφt−1
1 (x, a) + λ?` +Bt(x, a, x′).

We note that

L(q1;α, λ, β, µ+, µ−)

= D
(
q1 | q̄ t1

)
+

L−1∑
`= 0

∑
x∈X`

∑
a∈A

∑
x′ ∈X`+1

(
∂L

∂q1(x, a, x′)
+ α(x, a)

)
q1(x, a, x′)−

L−1∑
`= 0

λ`

= D
(
q1 | q̄ t1

)
+

L−1∑
`= 0

∑
x∈X`

∑
a∈A

∑
x′ ∈X`+1

∂L
∂q1(x, a, x′)

q1(x, a, x′)

+
L−1∑
`= 0

∑
x∈X`

∑
a∈A

(
∂L

∂q1(x, a)
− ln q1(x, a) + ln q̄ t1(x, a)

)
q1(x, a)−

L−1∑
`= 0

λ`

=

L−1∑
`= 0

∑
x∈X`

∑
a∈A

∑
x′ ∈X`+1

∂L
∂q1(x, a, x′)

q1(x, a, x′)

+

L−1∑
`= 0

∑
x∈X`

∑
a∈A

((
∂L

∂q1(x, a)
− 1

)
q1(x, a) + ln q̄ t1(x, a)

)
−

L−1∑
`= 0

λ`.

We now collect all previously determined optimal dual variables and apply the strong duality,

β?, µ+,?, µ−,? = argmax
β, µ+, µ−≥ 0

maximize
α, λ

minimize
q1

L(q1;α, λ, β, µ+, µ−)

= argmax
β, µ+, µ−≥ 0

L(q?1;α?, λ?, β, µ+, µ−)

= argmax
β, µ+, µ−≥ 0

−L+
L−1∑
`= 0

∑
x∈X`

∑
a∈A

ln q̄ t1(x, a)−
L−1∑
`= 0

λ?`

= argmin
β, µ+, µ−≥ 0

L−1∑
`= 0

lnZt`

where the third equality is due to: ∂L
∂q1(x,a,x′) |q?1(x,a,x′) = 0 and ∂L

∂q1(x,a) |q?1(x,a) = 0, and we ignore all
constants that are independent of β, µ+, and µ− for the last equality; we note that this minimization
problem is a convex optimization problem over the nonnegative orthant. Hence, we have proved the
update (14a) as an efficient update (18). Similarly, we have an efficient update (14b) for the second
problem (13b) and the proof is complete.
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9. Proof of Lemma 1

For any q1 ∈ ∆(P1) and q2 ∈ ∆(P2), we estimate

P̂1(· |x, a) =
q1(x, a, ·)∑

x′ ∈X`+1
q1(x, a, x′)

and P̂2(· | y, b) =
q2(y, b, ·)∑

y′ ∈Y`+1
q2(y, b, y′)

.

Consequently,∥∥∥∥∥ q1(x, a, ·)∑
x′ ∈X`+1

q1(x, a, x′)
− P̄ k11 (· |x, a)

∥∥∥∥∥
1

≤

∥∥∥∥∥ q1(x, a, ·)∑
x′ ∈X`+1

q1(x, a, x′)
− P̂1(· |x, a)

∥∥∥∥∥
1

+
∥∥∥P̂1(· |x, a)− P̄ k11 (· |x, a)

∥∥∥
1

=
∥∥∥P̂1(· |x, a)− P̄ k11 (· |x, a)

∥∥∥
1

which implies that q1 ∈ ∆(P k11 ). Similarly, we have q2 ∈ ∆(P k22 ). Therefore, ∆(P1) ⊂ ∆(Pk11 )
and ∆(P2) ∈ ∆(Pk22 ). The probability argument follows Lemma 1 (Neu et al., 2012) or its original
version, Lemma 17 (Jaksch et al., 2010): with probability 1− δ it holds that

‖P̂1(· |x, a)− P̄ k11 (· |x, a)‖1 ≤ εk11 and ‖P̂2(· | y, b)− P̄ k22 (· | y, b)‖1 ≤ εk22

for all (x, a) ∈ X ×A, (y, b) ∈ Y ×B, and all epochs k1 and k2.

10. Proof of Lemma 3

We recall the occupancy measures induced by the empirical transitions P̂1 and P̂2,

q̂ t1(x, a, x′) = d̂ t1(x)πt(a |x)P̂ k11 (x′ |x, a) and q̂ t2(y, b, y′) = d̂ t2(y)µt(b | y)P̂ k22 (y′ | y, b)

q̂ t1(x, a) =
∑

x′ ∈X`+1

q̂ t1(x, a, x′) and q̂ t2(y, b) =
∑

y′ ∈Y`+1

q̂ t2(y, b, y′)

where d̂ t1(x) and d̂ t2(x) are the stationary state visitation probabilities, and the occupancy measures
induced by the true transitions P1 and P2,

qt1(x, a, x′) = dt1(x)πt(a |x)P1(x′ |x, a) and qt2(y, b, y′) = dt2(y)µt(b | y)P2(y′ | y, b)

qt1(x, a) =
∑

x′ ∈X`+1

qt1(x, a, x′) and qt2(y, b) =
∑

y′ ∈Y`+1

qt2(y, b, y′)

where dt1(x) and dt2(x) are the stationary state visitation probabilities. We denote by ` the layer that
x or y belongs to.

We first present a useful property on how the transition estimation errors affect the mismatch of
occupancy measures.
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Lemma 12 Let q̂ t1 , q̂ t2 , qt1, and qt2 be generated by Algorithm 1. Then,

∥∥q̂ t1 − qt1∥∥1
≤

L−1∑
j= 0

j∑
`= 0

∑
x∈X`

∑
a∈A

πt(a |x)d̂ t1(x)
∥∥∥P̂ k11 (· |x, a)− P1(· |x, a)

∥∥∥
1

(19a)

∥∥q̂ t2 − qt2∥∥1
≤

L−1∑
j= 0

j∑
`= 0

∑
y ∈Y`

∑
b∈B

µt(b | y)d̂ t2(y)
∥∥∥P̂ k22 (· | y, b)− P2(· | y, b)

∥∥∥
1
. (19b)

Proof Since two players have the independent transitions, it suffices to just prove one of two players.
We next prove (19a) for the min-player. By the definitions, we can bound

∥∥q̂ t1 − qt1∥∥1
by

∥∥q̂ t1 − qt1∥∥1
=

L−1∑
`= 0

∑
x∈X`

∑
a∈A

∣∣∣∣∣∣
∑

x′ ∈X`+1

q̂ t1(x, a, x′)−
∑

x′ ∈X`+1

qt1(x, a, x′)

∣∣∣∣∣∣
≤

L−1∑
`= 0

∑
x∈X`

∑
a∈A

∥∥q̂ t1(x, a, ·)− qt1(x, a, ·)
∥∥

1

=

L−1∑
`= 0

∑
x∈X`

∑
a∈A

πt(a |x)
∥∥∥d̂ t1(x)P̂ k11 (· |x, a)− dt1(x)P1(· |x, a)

∥∥∥
1

(20)

where we apply the triangle inequality to obtain the inequality. We add and subtract d̂ t1(x)P1(· |x, a)

into the norm ‖d̂ t1(x)P̂ k11 (· |x, a)− dt1(x)P1(· |x, a)‖1, and apply the triangle inequality again,∥∥∥d̂ t1(x)P̂ k11 (· |x, a)− dt1(x)P1(· |x, a)
∥∥∥

1

≤
∥∥∥d̂ t1(x)P̂ k11 (· |x, a)− d̂ t1(x)P1(· |x, a)

∥∥∥
1

+
∥∥∥d̂ t1(x)P1(· |x, a)− dt1(x)P1(· |x, a)

∥∥∥
1
.

Therefore,

L−1∑
`= 0

∑
x∈X`

∑
a∈A

∥∥q̂ t1(x, a, ·)− qt1(x, a, ·)
∥∥

1

≤
L−1∑
`= 0

∑
x∈X`

∑
a∈A

πt(a |x)d̂ t1(x)
∥∥∥P̂ k11 (· |x, a)− P1(· |x, a)

∥∥∥
1

+

L−1∑
`= 0

∑
x∈X`

∑
a∈A

πt(a |x)
∣∣∣d̂ t1(x)− dt1(x)

∣∣∣ ‖P1(· |x, a)‖1 .

(21)

We can further simplify the upper bound in (21). Using ‖P1(· |x, a)‖1 = 1 and
∑

a∈A π
t(a |x) = 1,

we have

L−1∑
`= 0

∑
x∈X`

∑
a∈A

πt(a |x)
∣∣∣d̂ t1(x)− dt1(x)

∣∣∣ ‖P1(· |x, a)‖1 =
L−1∑
`= 0

∑
x∈X`

∣∣∣d̂ t1(x)− dt1(x)
∣∣∣ .
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By the definitions, d̂ t1(x) = dt1(x) = 1 for x ∈ X0, and d̂ t1(x) =
∑

x◦ ∈X`−1

∑
a∈A q̂

t
1(x◦, a, x)

and dt1(x) =
∑

x◦ ∈X`−1

∑
a∈A q

t
1(x◦, a, x) for x ∈ X`. Thus,

L−1∑
`= 0

∑
x∈X`

∣∣∣d̂ t1(x)− dt1(x)
∣∣∣

=

L−1∑
`= 1

∑
x∈X`

∣∣∣d̂ t1(x)− dt1(x)
∣∣∣

=

L−1∑
`= 1

∑
x∈X`

∣∣∣∣∣∣
∑

x◦ ∈X`−1

∑
a∈A

q̂ t1(x◦, a, x)−
∑

x◦ ∈X`−1

∑
a∈A

qt1(x◦, a, x)

∣∣∣∣∣∣
≤

L−1∑
`= 1

∑
x∈X`

∑
a∈A

∑
x◦ ∈X`−1

∣∣q̂ t1(x◦, a, x)− qt1(x◦, a, x)
∣∣

=
L−1∑
`= 1

∑
a∈A

∑
x◦ ∈X`−1

∥∥q̂ t1(x◦, a, ·)− qt1(x◦, a, ·)
∥∥

1

=
L−2∑
`= 0

∑
x∈X`

∑
a∈A

∥∥q̂ t1(x, a, ·)− qt1(x, a, ·)
∥∥

1
.

We now return back to (21),

L−1∑
`= 0

∑
x∈X`

∑
a∈A

∥∥q̂ t1(x, a, ·)− qt1(x, a, ·)
∥∥

1

≤
L−1∑
`= 0

∑
x∈X`

∑
a∈A

πt(a |x)d̂ t1(x)
∥∥∥P̂ k11 (· |x, a)− P1(· |x, a)

∥∥∥
1

+
L−2∑
`= 0

∑
x∈X`

∑
a∈A

∥∥q̂ t1(x, a, ·)− qt1(x, a, ·)
∥∥

1

(22)

which is a recursive formula for
∑j

`= 0

∑
x∈X`

∑
a∈A

∥∥q̂ t1(x, a, ·)− qt1(x, a, ·)
∥∥

1
over j ∈ {0, 1, . . . , L−

1}. By the recursion,

L−1∑
`= 0

∑
x∈X`

∑
a∈A

∥∥q̂ t1(x, a, ·)− qt1(x, a, ·)
∥∥

1

≤
L−1∑
j= 0

j∑
`= 0

∑
x∈X`

∑
a∈A

πt(a |x)d̂ t1(x)
∥∥∥P̂ k11 (· |x, a)− P1(· |x, a)

∥∥∥
1
.

Finally, we complete the proof by using (20).

With Lemma 12 in place, we are ready to prove Lemma 3.
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Proof [Proof of Lemma 3] The proof is based on Lemma 12. By (19a),∥∥q̂ t1 − qt1∥∥1

≤
L−1∑
j= 0

j∑
`= 0

∑
x∈X`

∑
a∈A

(
πt(a |x)d̂ t1(x)− I{(x`, a`) = (x, a)}

) ∥∥∥P̂ k11 (· |x, a)− P1(· |x, a)
∥∥∥

1

+
L−1∑
j= 0

j∑
`= 0

∑
x∈X`

∑
a∈A

I{(x`, a`) = (x, a)}
∥∥∥P̂ k11 (· |x, a)− P1(· |x, a)

∥∥∥
1

where I{·} is the indicator function that is 1 with probability πt(a |x)d̂ t1(x) and 0 otherwise.
Let ρt1(x, a) := ‖P̂ k11 (· |x, a)− P1(· |x, a)‖1. Clearly, ρt1(x, a) ≤ 2. Summing

∥∥q̂ t1 − qt1∥∥1
from t = 0 to t = T − 1 leads to,

T−1∑
t= 0

∥∥q̂ t1 − qt1∥∥1

≤
T−1∑
t= 0

L−1∑
j= 0

j∑
`= 0

∑
x∈X`

∑
a∈A

(
πt(a |x)d̂ t1(x)− I{(x`, a`) = (x, a)}

)
ρt1(x, a)

+
T−1∑
t= 0

L−1∑
j= 0

j∑
`= 0

∑
x∈X`

∑
a∈A

I{(x`, a`) = (x, a)}ρt1(x, a)

(23)

where the layer ` depends on episode t implicitly. We next apply the martingale concentration and
Lemma 1 to the right-hand side of (23).

Let F t1 be an σ-algebra that is generated by the state-action sequence, reward/utility functions for
the min-player up to episode t. By the definition of epoch k1 := kt1, ρt1(x, a) defines over F t−1

1 only
and thus,

E

 ∑
x∈X`

∑
a∈A

(
πt(a |x)d̂ t1(x)− I{(x`, a`) = (x, a)}

)
ρt1(x, a)

∣∣∣∣∣F t−1
1

 = 0.

Meanwhile, it is easy to see that∣∣∣∣∣∣
∑
x∈X`

∑
a∈A

(
πt(a |x)d̂ t1(x)− I{(x`, a`) = (x, a)}

)
ρt1(x, a)

∣∣∣∣∣∣
≤ 2

∑
x∈X`

∑
a∈A

(
πt(a |x)d̂ t1(x) + I{(x`, a`) = (x, a)}

)
which is bounded by 4 since the summands are probability distributions. Hence,∑

x∈X`
∑

a∈A
(
πt(a |x)d̂ t1(x)− I{(x`, a`) = (x, a)}

)
ρt1(x, a) is a martingale difference sequence

that adapts to the filtration {F t1}t≥0. By the Azuma-Hoeffding inequality, with probability 1− δ/L
it holds that

T−1∑
t= 0

∑
x∈X`

∑
a∈A

(
πt(a |x)d̂ t1(x)− I{(x`, a`) = (x, a)}

)
ρt1(x, a) ≤ 4

√
2T log

L

δ
(24)
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where δ ∈ (0, 1). By the union bound, (24) holds with probability 1− δ for all ` ∈ {0, 1, . . . , L− 1}.
Thus, with probability 1− δ, we have

T−1∑
t= 0

L−1∑
j= 0

j∑
`= 0

∑
x∈X`

∑
a∈A

(
πt(a |x)d̂ t1(x)− I{(x`, a`) = (x, a)}

)
ρt1(x, a) ≤ 2L2

√
2T log

L

δ
. (25)

For the rest, we apply Lemma 1. By the definition of epoch k1 := kt1, we have Nkt1
1 (x, a) =∑kt1−1

k= 0 n
k
1(x, a). An application of Lemma 24 yields

kt1∑
k= 1

nk1(x, a)

max(1,
√
Nk

1 (x, a))
≤ 2

√
N
kt1
1 (x, a). (26)

We note that
∑

x∈X`
∑

a∈A I{(x`, a`) = (x, a)}ρt1(x, a) = ‖P̂ k11 (· |x`, a`)− P1(· |x`, a`)‖1. By
Lemma 1, with probability 1− δ it holds that

T−1∑
t= 0

L−1∑
j= 0

j∑
`= 0

∑
x∈X`

∑
a∈A

I{(x`, a`) = (x, a)}ρt1(x, a)

=
T−1∑
t= 0

L−1∑
j= 0

j∑
`= 0

‖P̂ k11 (· |x`, a`)− P1(· |x`, a`)‖1

≤
T−1∑
t= 0

L−1∑
j= 0

j∑
`= 0

√
2|X`+1| log(T |A||X|/δ)

max(1, Nk1
1 (x`, a`))

.

By the definition of Nk1
1 := N

kt1
1 , using (26) it is convenient to have

T−1∑
t= 0

L−1∑
j= 0

j∑
`= 0

√
2|X`+1| log(T |A||X|/δ)

max(1, Nk1
1 (x`, a`))

≤
L−1∑
j= 0

j∑
`= 0

kT1∑
k= 0

∑
x∈X`

∑
a∈A

nk1(x, a)

√
2|X`+1| log(T |A||X|/δ)

max(1, Nk
1 (x, a))

≤
L−1∑
j= 0

j∑
`= 0

∑
x∈X`

∑
a∈A

2

√
2NkT

1 (x, a)|X`+1| log
T |A||X|

δ
.

Furthermore, we can make the following simplifications. By the Jensen’s inequality,

∑
x∈X`

∑
a∈A

2

√
2NkT

1 (x, a)|X`+1| log
T |A||X|

δ

≤ 2

√√√√2
∑
x∈X`

∑
a∈A

NkT
1 (x, a)|X`+1||X`||A| log

T |A||X|
δ

.
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We also note that
∑

x∈X`
∑

a∈AN
kT
1 (x, a) ≤ T and

√
|X`+1||X`| ≤ (|X`+1|+ |X`|) /2. Thus,

T−1∑
t= 0

L−1∑
j= 0

j∑
`= 0

√
2|X`+1| ln(T |A||X|/δ)

max(1, Nk1
1 (x`, a`))

≤
L−1∑
j= 0

j∑
`= 0

2

√
2T |X`+1||X`||A| log

T |A||X|
δ

≤
L−1∑
j= 0

j∑
`= 0

(|X`+1|+ |X`|)
√

2T |A| log
T |A||X|

δ

≤ L|X|
√

2T |A| log T |A||X|
δ .

Therefore, with probability 1− δ it holds that

T−1∑
t= 0

L−1∑
j= 0

j∑
`= 0

∑
x∈X`

∑
a∈A

I{(x`, a`) = (x, a)}ρt1(x, a) ≤ L|X|
√

2T |A| log T |A||X|
δ . (27)

Finally, we take a union of (25) and (27) and substitute it into (23) to conclude the proof.

11. Proof of Lemma 5

We first present a basic property of the Kullback-Leibler divergence that generalizes similar properties
in the literature (Nemirovski et al., 2009; Tseng, 2009; Wei et al., 2020) to the convex-concave
minimax problems. For this purpose, we set some standard notations. Let X ⊂ Rd be a convex set
with non-empty interior, X int 6= ∅. Let φ: X → R be a function that is is continuously differentiable
on X int. Let ∆x ⊂ X be a compact convex set containing the origin. Denote ∆o

x = ∆ ∩X int and let
∆o
x 6= ∅. We define the Kullback-Leibler divergence, D: ∆x ×∆o

x → R,

D(x, x′) := φ(x)− φ(x′)− 〈∇φ(x′), x− x′〉.

An interesting case is when ∆x becomes a probability simplex. If φ(x) =
∑d

i= 1(xi log xi − xi),
then D(x, x′) =

∑d
i= 1 xi log(xi/x

′
i)−

∑d
i= 1(xi − x′i) defines the unnormalized Kullback-Leibler

divergence (Cover, 1999; Boyd et al., 2004). This is the setup we will discuss later.

Lemma 13 Let f(x, y): X × Y → R be a continuous differentiable function that is convex in x
and concave in y, where X and Y are compact convex sets in Rd. Suppose for some x′ ∈ ∆o

x and
y′ ∈ ∆o

y,
(x?, y?) ∈ argminimax

x∈∆x, y ∈∆y

f(x, y) + η−1D(x |x′)− η−1D(y | y′)

and x? ∈ ∆o
x and y? ∈ ∆o

y, where η > 0. Then, for any x ∈ ∆x and y ∈ ∆y,

f(x?, y)+η−1
(
D(x?, x′)+D(y?, y′)

)
≤ f(x, y?)+η−1

(
D(x, x′)+D(y, y′)−D(x, x?)−D(y, y?)

)
.
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Proof For the smooth convex-concave function f , it is necessary to have the first-order stationary
condition on (x?, y?). There exist∇xf(x?, y?) and ∇y(x?, y?) such that〈

∇xf(x?, y?) + η−1
(
φ(x?)− φ(x′)

)
, x− x?

〉
≥ 0, for any x ∈ ∆x (28a)〈

−∇yf(x?, y?) + η−1
(
φ(y?)− φ(y′)

)
, y − y?

〉
≥ 0, for any y ∈ ∆y. (28b)

By the definition of D(· | ·),

η−1
(
D(x, x′)−D(x, x?)

)
= η−1

(
φ(x?)− φ(x′)− 〈∇φ(x′), x− x′〉+ 〈∇φ(x?), x− x?〉

)
= η−1

(
φ(x?)− φ(x′)− η−1〈∇φ(x′), x? − x′〉

)
− 〈∇xf(x?, y?), x− x?〉

+ 〈∇xf(x?, y?) + η−1
(
∇φ(x?)−∇φ(x′)

)
, x− x?〉

= η−1D(x?, x′)− 〈∇xf(x?, y?), x− x?〉

+ 〈∇xf(x?, y?) + η−1
(
∇φ(x?)−∇φ(x′)

)
, x− x?〉.

Application of (28a) leads to

η−1
(
D(x, x′)−D(x, x?)

)
≥ η−1D(x?, x′)− 〈∇xf(x?, y?), x− x?〉

≥ η−1D(x?, x′) + f(x?, y?)− f(x, y?)
(29)

where the last inequality is due to the convexity fo f(x, y?) in x: f(x, y?) ≥ f(x?, y?)+〈∇xf(x?, y?), x−
x?〉.

Similarly, we work on η−1
(
D(y, y′)−D(y, y?)

)
and (28b).

η−1
(
D(y, y′)−D(y, y?)

)
≥ η−1D(y?, y′) + f(x?, y)− f(x?, y?). (30)

Finally, we conclude the proof by adding (29) to (30) from both sides.

Before the proof of Lemma 5, we next show some useful bounds on the unnormalized Kullback-
Leibler divergence.

Lemma 14 Let q(x, a, x′) and q′(x, a, x′) be two occupancy measures, and q(x, a) and q′(x, a) be
the associated state-action visitation probability distributions. Then,

D(q, q′) ≥ 1

2L

∥∥q − q′∥∥2

1
.

Proof We recall q(x, a) and q′(x, a),

q(x, a) =
∑
x′ ∈X`

q(x, a, x′) and q′(x, a) =
∑
x′ ∈X`

q′(x, a, x′)

where ` is the layer that x belongs to. We note that q(x, a) and q′(x, a) define probability laws for
each ` ∈ {0, 1, . . . , L− 1}, and

∑
x∈X`

∑
a∈A q(x, a) =

∑
x∈X`

∑
a∈A q

′(x, a) = 1.
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By the definition,

D(q, q′) =

L−1∑
`= 0

∑
x∈X`

∑
a∈A

q(x, a) log
q(x, a)

q′(x, a)
−

L−1∑
`= 0

∑
x∈X`

∑
a∈A

(
q(x, a)− q′(x, a)

)
=

L−1∑
`= 0

∑
x∈X`

∑
a∈A

q(x, a) log
q(x, a)

q′(x, a)

≥ 1

2

L−1∑
`= 0

∥∥q(x, a)− q′(x, a)
∥∥2

1

≥ 1

2L

(
L−1∑
`= 0

∥∥q(x, a)− q′(x, a)
∥∥

1

)2

=
1

2L

∥∥q − q′∥∥2

1

where we apply the Pinsker’s inequality to
∑

x∈X`
∑

a∈A q(x, a) log q(x,a)
q′(x,a) in the first inequality.

Lemma 15 Let q(x, a, x′) and q′(x, a, x′) be two occupancy measures, and q(x, a) and q′(x, a) be
the associated state-action visitation probability laws. Define q̃ ′(x, a) = (1− θ)q′(x, a) + θ 1

|X`||A|
for (x, a) ∈ X` ×A, ` ∈ {0, 1, . . . , L− 1}, and θ ∈ (0, 1]. Then,

D(q, q̃ ′)−D(q, q′) ≤ θL log(|X||A|) and D(q, q̃ ′) ≤ L log(|X||A|/θ).

Proof By the definition,

D(q, q̃ ′)−D(q, q′)

=

L−1∑
`= 0

∑
x∈X`

∑
a∈A

q(x, a)

(
log

q(x, a)

q̃ ′(x, a)
− log

q(x, a)

q′(x, a)

)
−

L−1∑
`= 0

∑
x∈X`

∑
a∈A

(
q′(x, a)− q̃ ′(x, a)

)
=

L−1∑
`= 0

∑
x∈X`

∑
a∈A

q(x, a)
(
log q′(x, a)− log q̃ ′(x, a)

)
=

L−1∑
`= 0

∑
x∈X`

∑
a∈A

q(x, a)

(
log q′(x, a)− log

(
(1− θ)q′(x, a) + θ

1

|X`||A|

))
.

By the Jensen’s inequality,

D(q, q̃ ′)−D(q, q′)

≤
L−1∑
`= 0

∑
x∈X`

∑
a∈A

q(x, a)

(
log q′(x, a)− (1− θ) log q′(x, a)− θ log

1

|X`||A|

)

=

L−1∑
`= 0

∑
x∈X`

∑
a∈A

θq(x, a)
(
log q′(x, a) + log |X`||A|

)
≤

L−1∑
`= 0

∑
x∈X`

∑
a∈A

θq(x, a) log |X`||A|

≤ θL log |X||A|
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where the second inequality is due to that a negative entropy is non-positive.
We next prove the second inequality. By the definition,

D(q, q̃ ′) =

L−1∑
`= 0

∑
x∈X`

∑
a∈A

q(x, a)log
q(x, a)

q̃ ′(x, a)
−

L−1∑
`= 0

∑
x∈X`

∑
a∈A

(
q(x, a)− q̃ ′(x, a)

)
=

L−1∑
`= 0

∑
x∈X`

∑
a∈A

q(x, a)
(
log q(x, a)− log q̃ ′(x, a)

)
=

L−1∑
`= 0

∑
x∈X`

∑
a∈A

q(x, a)

(
log q(x, a)− log

(
(1− θ)q′(x, a) + θ

1

|X`||A|

))

≤
L−1∑
`= 0

∑
x∈X`

∑
a∈A
−q(x, a)log

(
(1− θ)q′(x, a) + θ

1

|X`||A|

)
where the last inequality is due to that a negative entropy is non-positive. We note that − log(·) is a
non-increasing function. We can simplify the upper bound on D(q, q̃ ′) above by,

D(q, q̃ ′) ≤
L−1∑
`= 0

∑
x∈X`

∑
a∈A
−q(x, a)log

(
θ

1

|X`||A|

)

=
L−1∑
`= 0

∑
x∈X`

∑
a∈A

q(x, a) log
|X`||A|
θ

≤
L−1∑
`= 0

∑
x∈X`

∑
a∈A

q(x, a) log
|X||A|
θ

= L log
|X||A|
θ

.

We now are ready to prove Lemma 5.
Proof [Proof of Lemma 5] By Lemma 1, with probability 1− δ it holds that

∆(P1) ⊂ ∩T−1
t= 0∆(kt1) and ∆(P2) ⊂ ∩T−1

t= 0∆(kt2).

We note that the solution (q?1, q
?
2) in hindsight to Problem (4) satisfies q?1 ∈ ∆(P1) and q?2 ∈ ∆(P2).

Hence, q?1 ∈ ∩
T−1
t= 0∆(kt1) and q?2 ∈ ∆(P2) ∩T−1

t= 0 ∆(kt2) with probability 1 − δ. For episode t, we
apply Lemma 13 to the primal update (8) with

f(x, y)|x= q1, y= q2 = V
〈
q1 · q̂ t−1

2 + q̂ t−1
1 · q2, r

t−1
〉

+ λt−1〈q1, g
t−1〉 − λt−1〈q2, h

t−1〉

and x? = q̂ t1 , y? = q̂ t2 , x′ = q̃ t−1
1 , y′ = q̃ t−1

2 , x = q?1 , and y = q?2 . Thus, with probability 1− δ it
holds for any t that

V
〈
q̂ t1 · q̂

t−1
2 + q̂ t−1

1 · q?2, rt−1
〉

+ λt−1〈q̂ t1 , gt−1〉 − λt−1〈q?2, ht−1〉

+ η−1
(
D(q̂ t1 , q̃

t−1
1 ) +D(q̂ t2 , q̃

t−1
2 )

)
≤ V

〈
q?1 · q̂

t−1
2 + q̂ t−1

1 · q̂ t2 , rt−1
〉

+ λt−1〈q?1, gt−1〉 − λt−1〈q̂ t2 , ht−1〉

+ η−1
(
D(q?1, q̃

t−1
1 ) + D(q?2, q̃

t−1
2 ) − D(q?1, q̂

t
1) − D(q?2, q̂

t
2)
)
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or, equivalently,

V
〈
q̂ t1 · q̂

t−1
2 − q̂ t−1

1 · q̂ t2 , rt−1
〉

+ λt−1〈q̂ t1 , gt−1〉 + λt−1〈q̂ t2 , ht−1〉

+ η−1
(
D(q̂ t1 , q̃

t−1
1 ) +D(q̂ t2 , q̃

t−1
2 )

)
≤ V

〈
q?1 · q̂

t−1
2 − q̂ t−1

1 · q?2, rt−1
〉

+ λt−1〈q?1, gt−1〉 + λt−1〈q?2, ht−1〉

+ η−1
(
D(q?1, q̃

t−1
1 ) + D(q?2, q̃

t−1
2 ) − D(q?1, q̂

t
1) − D(q?2, q̂

t
2)
)
.

(31)

Let ∆t := 1
2

(
(λt)2 − (λt−1)2

)
be the drift of the consecutive dual updates. Then,

∆t =
1

2

(
(λt)2 − (λt−1)2

)
=

1

2

(
max2

(
λt−1 +

(
〈q̂ t1 , gt−1〉+ 〈q̂ t2 , ht−1〉 − b

)
, 0
)
− (λt−1)2

)
≤ λt−1

(
〈q̂ t1 , gt−1〉+ 〈q̂ t2 , ht−1〉 − b

)
+

1

2

(
〈q̂ t1 , gt−1〉+ 〈q̂ t2 , ht−1〉 − b

)2
≤ λt−1

(
〈q̂ t1 , gt−1〉+ 〈q̂ t2 , ht−1〉 − b

)
+ 2L2

(32)

where the first inequality is due to max2(x, 0) ≤ x2 and we apply 〈q̂ t1 , gt−1〉, 〈q̂ t2 , ht−1〉, b ∈ [0, L]
in the last inequality. Adding (32) to (31) from both sides of the inequalities without changing the
inequality direction yields

V
〈
q̂ t1 · q̂

t−1
2 − q̂ t−1

1 · q̂ t2 , rt−1
〉

+ ∆t + η−1
(
D(q̂ t1 , q̃

t−1
1 ) +D(q̂ t2 , q̃

t−1
2 )

)
≤ V

〈
q?1 · q̂

t−1
2 − q̂ t−1

1 · q?2, rt−1
〉

+ λt−1
(
〈q?1, gt−1〉+ 〈q?2, ht−1〉 − b

)
+ 2L2

+ η−1
(
D(q?1, q̃

t−1
1 ) +D(q?2, q̃

t−1
2 ) − D(q?1, q̂

t
1) − D(q?2, q̂

t
2)
)
.

(33)

However,

V
〈
q̂ t1 · q̂

t−1
2 − q̂ t−1

1 · q̂ t2 , rt−1
〉

+ η−1
(
D(q̂ t1 , q̃

t−1
1 ) +D(q̂ t2 , q̃

t−1
2 )

)
= V

〈
q̂ t1 · q̂

t−1
2 − q̃ t−1

1 · q̂ t−1
2 , rt−1

〉
+ V

〈
q̃ t−1

1 · q̂ t−1
2 − q̂ t−1

1 · q̂ t−1
2 , rt−1

〉
+V

〈
q̂ t−1

1 · q̂ t−1
2 − q̂ t−1

1 · q̃ t−1
2 , rt−1

〉
+ V

〈
q̂ t−1

1 · q̃ t−1
2 − q̂ t−1

1 · q̂ t2 , rt−1
〉

+ η−1D(q̂ t1 , q̃
t−1
1 ) + η−1D(q̂ t2 , q̃

t−1
2 )

≥ −V
∥∥q̂ t−1

2 · rt−1
∥∥
∞
∥∥q̂ t1 − q̃ t−1

1

∥∥
1
− V

∥∥q̂ t−1
2 · rt−1

∥∥
∞
∥∥q̃ t−1

1 − q̂ t−1
1

∥∥
1

−V
∥∥q̂ t−1

1 · rt−1
∥∥
∞
∥∥q̂ t−1

2 − q̃ t−1
2

∥∥
1
− V

∥∥q̂ t−1
1 · rt−1

∥∥
∞
∥∥q̃ t−1

2 − q̂ t2
∥∥

1

+ (2ηL)−1
∥∥q̂ t1 − q̃ t−1

1

∥∥2

1
+ (2ηL)−1

∥∥q̂ t2 − q̃ t−1
2

∥∥
1

≥ −V
∥∥q̂ t1 − q̃ t−1

1

∥∥
1
− 2θV L + (2ηL)−1

∥∥q̂ t1 − q̃ t−1
1

∥∥2

1

− 2θV L − V
∥∥q̃ t−1

2 − q̂ t2
∥∥

1
+ (2ηL)−1

∥∥q̂ t2 − q̃ t−1
2

∥∥
1

≥ − 4θV L − ηV 2L
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where we apply the Hölder’s inequality and Lemma 14 in the first inequality, the second inequality is
due to that

∥∥q̃ t−1
1 − q̂ t−1

1

∥∥
1

=

L−1∑
`= 0

∑
x∈X`

∑
a∈A

∣∣∣∣(1− θ)q̂ t−1
1 (x, a) + θ

1

|X`||A|
− q̂ t−1

1 (x, a)

∣∣∣∣
≤ θ

L−1∑
`= 0

∑
x∈X`

∑
a∈A

q̂ t−1
1 (x, a) + θ

L−1∑
`= 0

∑
x∈X`

∑
a∈A

1

|X`||A|
= 2θL

and ‖q̃ t−1
2 − q̂ t−1

2 ‖1 ≤ 2θL that can be proved similarly, and the last inequality is due to−bx+ax2 ≥
−b2/(4a) for any a, b > 0. Therefore, we take the lower bound above for the left-hand side of (33),

∆t − 4θV L − ηV 2L

≤ V
〈
q?1 · q̂

t−1
2 − q̂ t−1

1 · q?2, rt−1
〉

+ λt−1
(
〈q?1, gt−1〉+ 〈q?2, ht−1〉 − b

)
+ 2L2

+ η−1
(
D(q?1, q̃

t−1
1 ) +D(q?2, q̃

t−1
2 )−D(q?1, q̂

t
1)−D(q?2, q̂

t
2)
)
.

(34)

By Lemma 15,

D(q?1, q̃
t−1
1 )−D(q?1, q̂

t
1) = D(q?1, q̃

t−1
1 )−D(q?1, q̂

t−1
1 ) +D(q?1, q̂

t−1
1 )−D(q?1, q̂

t
1)

≤ θL log(|X||A|) +D(q?1, q̂
t−1
1 )−D(q?1, q̂

t
1)

and, similarly,

D(q?2, q̃
t−1
2 )−D(q?2, q̂

t
2) ≤ θL log(|Y ||B|) +D(q?2, q̂

t−1
2 )−D(q?2, q̂

t
2).

We now simplify (34) into

∆t ≤ V
〈
q?1 · q̂

t−1
2 − q̂ t−1

1 · q?2, rt−1
〉

+ λt−1
(
〈q?1, gt−1〉+ 〈q?2, ht−1〉 − b

)
+ η−1

(
D(q?1, q̂

t−1
1 ) +D(q?2, q̂

t−1
2 )−D(q?1, q̂

t
1)−D(q?2, q̂

t
2)
)

+ η−1θL
(

log(|X||A|) + log(|Y ||B|)
)

+ 2L2 + 4θV L + ηV 2L

which leads to the desired result by summing it up from t = 1 to T ,

T∑
t= 1

∆t ≤ V

T∑
t= 1

〈
q?1 · q̂ t−1

2 − q̂ t−1
1 · q?2, rt−1

〉
+

T∑
t= 1

λt−1
(
〈q?1, gt−1〉+ 〈q?2, ht−1〉 − b

)
+ η−1

T∑
t= 1

(
D(q?1, q̂

t−1
1 ) +D(q?2, q̂

t−1
2 )−D(q?1, q̂

t
1)−D(q?2, q̂

t
2)
)

+ η−1θLT
(

log(|X||A|) + log(|Y ||B|)
)

+ 2L2T + 4θV LT + ηV 2LT

≤ V
T∑
t= 1

〈
q?1 · q̂ t−1

2 − q̂ t−1
1 · q?2, rt−1

〉
+

T∑
t= 1

λt−1
(
〈q?1, gt−1〉+ 〈q?2, ht−1〉 − b

)
+ η−1

(
D(q?1, q̂

0
1 ) +D(q?2, q̂

0
2 )
)

+ η−1θLT
(

log(|X||A|) + log(|Y ||B|)
)

+ 2L2T + 4θV LT + ηV 2LT
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which leads to the desired result by noting that

D(q?1, q̂
0
1 ) ≤ L log(|X||A|), D(q?2, q̂

0
2 ) ≤ L log(|Y ||B|), and

T∑
t= 1

∆t ≥ 0.

12. Proofs of Lemma 6 and Lemma 7

We first present the boundedness of the dual update λt in Lemma 6. Our proof is based on a new drift
analysis in Lemma 22 that has been established in Yu et al. (2017) for providing a high probability
bound for stochastic processes.
Proof [Proof of Lemma 6] Let F t be an σ-algebra that is generated by the state-action sequence,
reward/utility functions for both players up to episode t. At the beginning, F0 = {∅,Ω}. We have a
discrete-time random process {λt, t ≥ 0} that adapts to F t. It suffices to check all assumptions in
Lemma 22.

By the dual update (10),∣∣λt+1 − λt
∣∣ =

∣∣∣max
(
λt +

(
〈q̂ t+1

1 , gt〉+ 〈q̂ t+1
2 , ht〉 − b

)
, 0
)
− λt

∣∣∣
≤

∣∣〈q̂ t+1
1 , gt〉+ 〈q̂ t+1

2 , ht〉 − b
∣∣

≤ 2L

where the first inequality is clear from two cases for max(·) and the second inequality is due to
〈q̂ t+1

1 , gt〉, 〈q̂ t+1
2 , ht〉 ∈ [0, L], b ∈ [0, 2L]. Consequently,

λt+t0 − λt =

t+t0−1∑
s= t

(
λs+1 − λs

)
≤

t+t0−1∑
s= t

∣∣λs+1 − λs
∣∣ ≤ 2t0L (35)

which leads to E[λt+t0 − λt | F t ] ≤ 2t0L. It is convenient to take δmax = 2L in Lemma 22.
We next determine the validity of other assumptions in Lemma 22. Let us denote the event in

Lemma 1 by Egood and we have P (Egood) ≥ 1− δ. We recall that the proof of Lemma 5 remains to
be valid if we replace q?1 by q̄1 and q?2 by q̄2 starting from (31). By doing so, it is ready to obtain a
similar result as (34): under the good event Egood it holds for any τ that

∆τ − 4θV L − ηV 2L

≤ V
〈
q̄1 · q̂ τ−1

2 − q̂ τ−1
1 · q̄2, r

τ−1
〉

+ λτ−1
(
〈q̄1, g

τ−1〉+ 〈q̄2, h
τ−1〉 − b

)
+ 2L2

+ η−1
(
D(q̄1, q̃

τ−1
1 ) +D(q̄2, q̃

τ−1
2 )−D(q̄1, q̂

τ
1 )−D(q̄2, q̂

τ
2 )
)

or, equivalently,

(λτ )2 − (λτ−1)2

≤ 2V
〈
q̄1 · q̂ τ−1

2 − q̂ τ−1
1 · q̄2, r

τ−1
〉

+ 2λτ−1
(
〈q̄1, g

τ−1〉+ 〈q̄2, h
τ−1〉 − b

)
+ 4L2

+ 2η−1
(
D(q̄1, q̃

τ−1
1 ) +D(q̄2, q̃

τ−1
2 )−D(q̄1, q̂

τ
1 )−D(q̄2, q̂

τ
2 )
)

+ 8θV L + 2ηV 2L.
(36)
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We note that |〈q̄1 · q̂ τ2 − q̂ τ1 · q̄2, r
τ 〉| ≤ L. By summing both sides of (36) from τ = t + 1 to

τ = t+ t0,

(λt+t0)2 − (λt)2 ≤ 2t0V L +

t+t0−1∑
τ = t

2λτ
(
〈q̄1, g

τ 〉+ 〈q̄2, h
τ 〉 − b

)
+ 4t0L

2

+ 2η−1
(
D(q̄1, q̃

t
1) +D(q̄2, q̃

t
2)
)

+ 8t0θV L + 2t0ηV
2L

where we omit two non-positive terms. Taking the conditional expectation given F t and Egood yields,

E
[
(λt+t0)2 − (λt)2 | F t, Egood

]
≤ 2t0V L +

t+t0−1∑
τ = t

2E
[
λτ
(
〈q̄1, g

τ 〉+ 〈q̄2, h
τ 〉 − b

)
| F t, Egood

]
+ 4t0L

2

+ 2η−1E
[
D(q̄1, q̃

t
1) +D(q̄2, q̃

t
2) | F t, Egood

]
+ 8t0θV L + 2t0ηV

2L

≤ 2t0V L − 2ξ

t+t0−1∑
τ = t

E
[
λτ | F t, Egood

]
+ 4t0L

2

+ 2η−1L(log(|X||A|/θ) + log(|Y ||B|/θ)) + 8t0θV L + 2t0ηV
2L

≤ 2t0V L − 2ξt0E
[
λt | F t, Egood

]
+ 2ξt0(t0 − 1)L + 4t0L

2

+ 2η−1L(log(|X||A|/θ) + log(|Y ||B|/θ)) + 8t0θV L + 2t0ηV
2L

(37)

where the second inequality is due to Lemma 15 and the fact: by the law of total expectation, for any
τ ≥ t, F t ⊂ Fτ and

E
[
λτ
(
〈q̄1, g

τ 〉+ 〈q̄2, h
τ 〉 − b

)
| F t, Egood

]
= E

[
E
[
λτ
(
〈q̄1, g

τ 〉+ 〈q̄2, h
τ 〉 − b

)
| Fτ

]
| F t, Egood

]
= E

[
λτE [〈q̄1, g

τ 〉+ 〈q̄2, h
τ 〉 − b] | F t, Egood

]
= E [〈q̄1, g

τ 〉+ 〈q̄2, h
τ 〉 − b]E

[
λτ | F t, Egood

]
≤ − ξ E

[
λτ | F t, Egood

]
where the inequality is due to the strict feasibility assumption on (q̄1, q̄2); the last inequality is due to
that

t+t0−1∑
τ = t

E
[
λτ | F t, Egood

]
≥

t+t0−1∑
τ = t

E
[
λt − 2(τ − t)L | F t, Egood

]
=

t0−1∑
τ = 0

E
[
λt − 2τL | F t, Egood

]
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which follows the fact λτ ≥ λt − 2(τ − t)L for any τ ≥ t ≥ 0 if we note that |λt+1 − λt| ≤ 2L.
Hence, we can simplify (37) as

E
[
(λt+t0)2 | F t, Egood

]
≤ E

[
(λt)2 | F t, Egood

]
− 2ξt0E

[
λt | F t, Egood

]
+ 2ξt20L + 4t0L

2 + 2t0V L

+ 2η−1L(log(|X||A|/θ) + log(|Y ||B|/θ)) + 8t0θV L + 2t0ηV
2L

≤ E
[
(λt)2 | F t, Egood

]
− ξt0E

[
λt | F t, Egood

]
− ξt0Θ + 2ξt20L + 4t0L

2 + 2t0V L

+ 2η−1L(log(|X||A|/θ) + log(|Y ||B|/θ)) + 8t0θV L + 2t0ηV
2L

= E
[
(λt)2 | F t, Egood

]
− ξt0E

[
λt | F t, Egood

]
− 1

2
ξ2t20

≤
(
E
[
λt | F t, Egood

]
− 1

2
ξt0

)2

where we apply λt ≥ Θ for the second inequality and we take Θ in Lemma 22,

Θ =
1

2
ξt0 + 2t0L +

4L2 + 8θV L+ 2ηV 2L+ 2V L

ξ
+

2L(log(|X||A|/θ) + log(|Y ||B|/θ))
t0ξη

.

Taking the square root and applying the Jensen’s inequality yield

E
[
λt+t0 | F t, Egood

]
≤
√
E
[
(λt+t0)2 | F t, Egood

]
≤ E

[
λt | F t, Egood

]
− 1

2
ξt0

which shows that E
[
λt+t0 − λt | F t, Egood

]
≤ −1

2ξt0. Application of law of total expectation to this
inequality and (35) with δ < 1

12 yields

E
[
λt+t0 − λt | F t

]
= P (Egood)E

[
λt+t0 − λt | F t, Egood

]
+ P (Ēgood)E

[
λt+t0 − λt | F t, Ēgood

]
≤ −1

2
ξt0 × (1− δ) + 2t0L× δ

≤ −1

4
ξt0

which verifies the assumption of Lemma 22 if we take ζ = ξ/4.
We now have verified all assumptions of Lemma 22 with appropriate parameters Θ, δmax, ζ. For

episode t, with probability 1− δ it holds that

λt ≤ Θ + t0δmax + t0
4δ2

max

ζ
log

(
8δ2

max

ζ

)
+ t0

4δ2
max

ζ
log

1

δ
.

We complete the proof by taking a union bound over t = 1, · · · , T .

With Lemma 6 in place, we are ready to prove Lemma 7.
Proof [Proof of Lemma 7]
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Let Zt :=
∑t−1

τ = 0 λ
τ
(
〈q?1, gτ 〉+ 〈q?2, hτ 〉 − b

)
. We note that

E
[
Zt | F t−1

]
= E

[
t−1∑
τ = 0

λτ
(
〈q?1, gτ 〉+ 〈q?2, hτ 〉 − b

) ∣∣∣∣F t−1

]

= E

[
t−2∑
τ = 0

λτ
(
〈q?1, gτ 〉+ 〈q?2, hτ 〉 − b

) ∣∣∣∣F t−1

]
+ λt−1E

[(
〈q?1, gt−1〉+ 〈q?2, ht−1〉 − b

)
| F t−1

]
≤ E

[
t−2∑
τ = 0

λτ
(
〈q?1, gτ 〉+ 〈q?2, hτ 〉 − b

) ∣∣∣∣F t−1

]
= E

[
Zt−1

]
where the inequality is because of E

[(
〈q?1, gt−1〉+ 〈q?2, ht−1〉 − b

)
| F t−1

]
= 〈q?1, g〉+〈q?2, h〉−b ≤

0. Hence, {Zt, t ≥ 0} a supermartingale.
We also note that

∣∣Zt+1 − Zt
∣∣ = λt

∣∣〈q?1, gt〉+ 〈q?2, ht〉 − b
∣∣ ≤ 2λtL. Thus, if |Zt+1 − Zt| > c

for some c ∈ R+, then λt > c/(2L). Let Y t := λt − c/(2L). Therefore,

{|Zt+1 − Zt| > c} ⊂ {Y t > 0}.

By Lemma 23,

P

(
T−1∑
t= 0

λt
(
〈q?1, gt〉+ 〈q?2, ht〉 − b

)
≥ z

)
≤ e−z

2/(2c2T ) +

T−1∑
τ = 0

P
(
λt >

c

2L

)
. (38)

By Lemma 6, with probability 1− δ it holds for any t that

λt ≤ Θ + 2t0L+ t0
64L2

ξ
log

(
128L2

ξ

)
+ t0

64L2

ξ
log

1

δ

or, equivalently,

P

(
λt ≥ Θ + 2t0L+ t0

64L2

ξ
log

(
128L2

ξ

)
+ t0

64L2

ξ
log

1

δ

)
≤ δ.

If we take

c = 2ΘL+ 4t0L
2 + t0

128L3

ξ
log

(
128L2

ξ

)
+ t0

128L3

ξ
log

1

δ
and z =

√
2Tc2 log(1/(δT ))

then (38) becomes

P

(
T−1∑
t= 0

λt
(
〈q?1, gt〉+ 〈q?2, ht〉 − b

)
≥ z

)
≤ 2δT

which proves the desired result.
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13. Proof of Theorem 10

By the dual update (10),

λt = max
(
λt−1 +

( 〈
q̂ t1 , g

t−1
〉

+
〈
q̂ t2 , h

t−1
〉
− b

)
, 0
)

≥ λt−1 +
( 〈
q̂ t1 , g

t−1
〉

+
〈
q̂ t2 , h

t−1
〉
− b

)
= λt−1 +

( 〈
q̂ t−1

1 , gt−1
〉

+
〈
q̂ t−1

2 , ht−1
〉
− b

)
+
〈
q̂ t1 − q̂

t−1
1 , gt−1

〉
+
〈
q̂ t2 − q̂

t−1
2 , ht−1

〉
≥ λt−1 +

( 〈
q̂ t−1

1 , gt−1
〉

+
〈
q̂ t−1

2 , ht−1
〉
− b

)
−
∥∥q̂ t1 − q̂ t−1

1

∥∥
1
−
∥∥q̂ t2 − q̂ t−1

2

∥∥
1

(39)
where the last inequality is due to: 〈q̂ t1 − q̂

t−1
1 , gt−1〉 ≤ ‖q̂ t1− q̂

t−1
1 ‖1‖gt−1‖∞, 〈q̂ t2 − q̂

t−1
2 , ht−1〉 ≤

‖q̂ t2 − q̂
t−1
2 ‖1‖ht−1‖∞, and ‖gt−1‖∞, ‖ht−1‖∞ ∈ [0, 1]. We note that λ0 = 0 from the initialization.

Summing up both sides of (39) from t = 1 to t = T leads to

T−1∑
t= 0

( 〈
q̂ t1 , g

t
〉

+
〈
q̂ t2 , h

t
〉
− b

)
≤ λT +

T∑
t= 1

(∥∥q̂ t1 − q̂ t−1
1

∥∥
1

+
∥∥q̂ t2 − q̂ t−1

2

∥∥
1

)
. (40)

We recall q̂ t1 ∈ ∆(kt1), q̂ t2 ∈ ∆(kt2) in the primal update (8) and ∆(kt1) and ∆(kt2) in the confidence
sets (11). To bound

∥∥q̂ t1 − q̂ t−1
1

∥∥
1

+
∥∥q̂ t2 − q̂ t−1

2

∥∥
1
, we consider two cases: (i) kt1 = kt−1

1 and
kt2 = kt−1

2 ; (ii) either kt1 6= kt−1
1 or kt2 6= kt−1

2 .
Case (i). In this case, we have: q̂ t1 , q̂ t−1

1 ∈ ∆(kt1), q̂ t2 , q̂ t−1
2 ∈ ∆(kt2). We begin with the primal

update (8) and apply Lemma 13 with,

f(x, y)|x= q1, y= q2 = V
〈
q1 · q̂ t−1

2 + q̂ t−1
1 · q2, r

t−1
〉

+ λt−1〈q1, g
t−1〉 − λt−1〈q2, h

t−1〉

and x? = q̂ t1 , y? = q̂ t2 , x′ = q̃ t−1
1 , y′ = q̃ t−1

2 , x = q̃ t−1
1 , and y = q̃ t−1

2 . Thus,

V
〈
q̂ t1 · q̂

t−1
2 + q̂ t−1

1 · q̃ t−1
2 , rt−1

〉
+ λt−1〈q̂ t1 , gt−1〉 − λt−1〈q̃ t−1

2 , ht−1〉

+ η−1
(
D(q̂ t1 , q̃

t−1
1 ) +D(q̂ t2 , q̃

t−1
2 )

)
≤ V

〈
q̃ t−1

1 · q̂ t−1
2 + q̂ t−1

1 · q̂ t2 , rt−1
〉

+ λt−1〈q̃ t−1
1 , gt−1〉 − λt−1〈q̂ t2 , ht−1〉

− η−1
(
D(q̃ t−1

1 , q̂ t1) +D(q̃ t−1
2 , q̂ t2)

)
.

or, equivalently,

η−1
(
D(q̂ t1 , q̃

t−1
1 ) +D(q̂ t2 , q̃

t−1
2 )

)
+ η−1

(
D(q̃ t−1

1 , q̂ t1) +D(q̃ t−1
2 , q̂ t2)

)
≤ V

〈
(q̃ t−1

1 − q̂ t1) · q̂ t−1
2 + q̂ t−1

1 · (q̂ t2 − q̃
t−1
2 ), rt−1

〉
+λt−1〈q̃ t−1

1 − q̂ t1 , gt−1〉 + λt−1〈q̃ t−1
2 − q̂ t2 , ht−1〉.

(41)

We note that 〈(q̃ t−1
1 − q̂ t1) · q̂ t−1

2 , rt−1〉 ≤ ‖(q̃ t−1
1 − q̂ t1) · q̂ t−1

2 ‖1‖rt−1‖∞ ≤ ‖q̃ t−1
1 − q̂ t1‖1, and,

similarly, 〈q̂ t−1
1 · (q̂ t2 − q̃

t−1
2 ), rt−1〉 ≤ ‖q̂ t2 − q̃

t−1
2 ‖1. Thus, we can reduce (41) into

η−1
(
D(q̂ t1 , q̃

t−1
1 ) +D(q̂ t2 , q̃

t−1
2 )

)
+ η−1

(
D(q̃ t−1

1 , q̂ t1) +D(q̃ t−1
2 , q̂ t2)

)
≤ (V + λt−1)

(∥∥q̃ t−1
1 − q̂ t1

∥∥
1

+
∥∥q̃ t−1

2 − q̂ t2
∥∥

1

)
where the left-hand side can be lower bounded by Lemma 14,

D(q̂ t1 , q̃
t−1
1 ) +D(q̃ t−1

1 , q̂ t1) ≥ L−1
∥∥q̃ t−1

1 − q̂ t1
∥∥2

1
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D(q̂ t2 , q̃
t−1
2 ) +D(q̃ t−1

2 , q̂ t2) ≥ L−1
∥∥q̃ t−1

2 − q̂ t2
∥∥2

1
.

Then, we apply the inequality (x+ y)2 ≤ 2(x2 + y2) and cancel a non-negative term to obtain∥∥q̃ t−1
1 − q̂ t1

∥∥
1

+
∥∥q̃ t−1

2 − q̂ t2
∥∥

1
≤ 2ηL(V + λt−1). (42)

By the definition of q̃ t−1
1 and q̃ t−1

2 ,

∥∥q̃ t−1
1 − q̂ t1

∥∥
1

=

L−1∑
`= 0

∑
x∈X`

∑
a∈A

∣∣∣∣(1− θ)q̂ t−1
1 (x, a) + θ

1

|X`||A|
− q̂ t1(x, a)

∣∣∣∣
≥

L−1∑
`= 0

∑
x∈X`

∑
a∈A

(
(1− θ)

∣∣q̂ t−1
1 (x, a)− q̂ t1(x, a)

∣∣− θ( 1

|X`||A|
+ q̂ t1(x, a)

))
= (1− θ)

∥∥q̂ t−1
1 − q̂ t1

∥∥
1
− 2θL.

Similarly, we have ‖q̃ t−1
2 − q̂ t2‖1 ≤ (1− θ)‖q̂ t−1

2 − q̂ t2‖1 − 2θL. Thus, we can further reduce (42)
into ∥∥q̂ t−1

1 − q̂ t1
∥∥

1
+ ‖q̂ t−1

2 − q̂ t2‖1 ≤ 2η(1− θ)−1L(V + λt−1) + 4θ(1− θ)−1L. (43)

Case (ii). In this case, either q̂ t1 , q̂ t−1
1 or q̂ t2 , q̂ t−1

2 might not have the same domain. For in-
stance, when kt1 > kt−1

1 , it is possible that ∆(kt1) becomes different from ∆(kt−1
1 ). We note

that kt1 > kt−1
1 only happens when episode t is the first one that belongs to epoch kt1. By

Lemma 25, kT1 ≤
√
T |X||A| log(8T/(|X||A|)) and kT2 ≤

√
T |Y ||B| log(8T/(|Y ||B|)) if we

are given T ≥ max(|X||A|, |Y ||B|).
We now combine two cases above for (40),

T∑
t= 1

(∥∥q̂ t1 − q̂ t−1
1

∥∥
1

+
∥∥q̂ t2 − q̂ t−1

2

∥∥
1

)
=

∑
1≤ t≤T

kt1 = kk−1
1 ∧ kt2 = kk−1

2

(∥∥q̂ t1 − q̂ t−1
1

∥∥
1

+
∥∥q̂ t2 − q̂ t−1

2

∥∥
1

)
+

∑
1≤ t≤T

kt1 = kk−1
1 ∨ kt2 = kk−1

2

(∥∥q̂ t1 − q̂ t−1
1

∥∥
1

+
∥∥q̂ t2 − q̂ t−1

2

∥∥
1

)
≤

∑
1≤ t≤T

kt1 = kk−1
1 ∧ kt2 = kk−1

2

(∥∥q̂ t1 − q̂ t−1
1

∥∥
1

+
∥∥q̂ t2 − q̂ t−1

2

∥∥
1

)
+ 2L(kT1 + kT2 )

≤ 2η(1− θ)−1L
T∑
t= 1

(V + λt−1) + 4θ(1− θ)−1LT + 2L(kT1 + kT2 )

where the first inequality is due to:
∥∥q̂ t1 − q̂ t−1

1

∥∥
1
≤ 2L and

∥∥q̂ t2 − q̂ t−1
2

∥∥
1
≤ 2L, and we apply (43)

from the case (i) for the last inequality. Using the bounds on kT1 , kT2 in the case (ii), we conclude the
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desired bound for (40),

T−1∑
t= 0

( 〈
q̂ t1 , g

t
〉

+
〈
q̂ t2 , h

t
〉
− b

)
≤ λT +

2ηL

1− θ

T∑
t= 1

λt−1 +
2ηV + 4θ

1− θ
LT

+2L
(√

T |X||A| log(8T/(|X||A|)) +
√
T |Y ||B| log(8T/(|Y ||B|))

)
.

We complete the proof by noting λ0 = 0, V = L
√
T , η = 1/(TL), and θ = 1/T .

14. Constrained MGs with Side Constraints

In this section, we present a special case of Problem (4) that is described as a zero-sum MG with side
constraint (Singh and Hemachandra, 2014). Having defined episodic MDPs and occupancy measures
in Section 2, we can formulate a constrained minimax problem in which the objective function is a
sum of the expected total rewards over T episodes and the constraint is on two agent’ expected total
utilities,

minimize
q1 ∈∆(P1)

maximize
q2 ∈∆(P2)

T−1∑
t= 0

〈
q1 · q2, r

t
〉

subject to 〈q1, g〉 ≤ b1 and 〈q2, h〉 ≤ b2

(44)

where we take b1, b2 ∈ (0, L] to avoid trivial cases since we note that 〈q1, g〉, 〈q2, h〉 ∈ [0, L]. The
side constraint corresponds to the limited use of budget/resource for each player. It is straightforward
to generalize it to account for multiple constraints. When the transitions P1 and P2 are known, the
occupancy measure sets ∆(P1) and ∆(P2) define convex polytopes on q1 and q2.

Let (q?1, q
?
2) be a solution to Problem (44) in hindsight. The existence of (q?1, q

?
2) is well-known

under compactness of the constraint sets (Neumann, 1928; Rosen, 1965). Since two constraints are
decoupled, it is natural to define the usual Nash equilibrium via two conditions (Altman and Shwartz,
2000; Daskalakis et al., 2021): (i)

∑T−1
t= 0〈q?1 · q?2, rt〉 ≤

∑T−1
t= 0〈q1 · q?2, rt〉 for any q1 ∈ ∆(P1)

satisfying 〈q1, g〉 ≤ b1; (ii)
∑T−1

t= 0〈q?1 · q2, r
t〉 ≤

∑T−1
t= 0〈q?1 · q?2, rt〉 for any q2 ∈ ∆(P2) satisfying

〈q2, h〉 ≤ b2. With this solution concept, we define the regret for any algorithm that plays the game
for T episodes by

Regret(T ) =

T−1∑
t= 0

(〈
qt1 · q?2, rt

〉
−
〈
q?1 · qt2, rt

〉)
(45)

where two players take policies πt and µt in episode t and they define occupancy measures qt1 and qt2
under the true transitions P1 and P2.

To measure the constraint satisfaction, we introduce the violation as a non-negative part of
accumulated constraint violations 〈qt1, g〉 − b1 and 〈qt2, h〉 − b2 over T episodes,

Violation1(T ) =

[
T−1∑
t= 0

(〈
qt1, g

t
〉
− b1

)]
+

and Violation2(T ) =

[
T−1∑
t= 0

(〈
qt2, h

t
〉
− b2

)]
+

. (46)

We next make an assumption that guarantees the existence of constrained Nash equilibrium (Alt-
man and Shwartz, 2000).
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Assumption 2 (Feasibility) There exists a joint policy (π̄, µ̄) associated to the occupancy measure
(q̄1, q̄2) and ξ > 0 such that 〈q̄1, g〉+ ξ ≤ b1 and 〈q̄2, h〉+ ξ ≤ b1.

14.1. Algorithm and Performance Guarantees

We now are ready to specialize Algorithm 1 to Problem (44). The only change is to replace the
primal-dual update (8) and (10) by the following optimistic primal-dual mirror descent step.

Let us recall that the occupancy measures qt1 for the min-player and qt2 for the max-player
are defined over the true transitions P1 and P2 in episode t. The primal update of our algorithm
maintains two occupancy measures q̂ t1 , q̂ t2 to estimate qt1, qt2, separately. Although q̂ t1 , q̂ t2 do not
necessarily come from the true transitions P1, P2, they propose a min-policy πt for the min-player
and a max-policy µt for the max-player given by (7).

We can revise our Lagrangian-based design to update estimates q̂ t1 and q̂ t2 as follows. Assume
that the transitions P1 and P2 are known. We consider a one-episode constrained minimax problem
based on reward/utility functions: rt−1, gt−1, ht−1, revealed at the end of episode t− 1,

minimize
q1 ∈∆(P1)

maximize
q2 ∈∆(P2)

〈
q1 · q2, r

t−1
〉

subject to
〈
q1, g

t−1
〉
≤ b1 and

〈
q2, h

t−1
〉
≤ b2

where ∆(P1) and ∆(P2) are sets of valid occupancy measures under P1 and P2, respectively. We
apply the method of Lagrange multipliers (Bertsekas, 2014) to deal with constraints by formulating a
generalized Lagrangian-based function,

Lt(q1, q2;λ1, λ2) := 〈q1 · q2, r
t−1〉 + λ1

(
〈q1, g

t−1〉 − b1
)
− λ2

(
〈q2, h

t−1〉 − b2
)

where q1 is the first primal variable for the min-player, q2 is the second primal variable for the
max-player, and λ1, λ2 ≥ 0 work as the Lagrange multiplier or the dual variable in penalizing the
min-player/max-player via the first/second λ-term. Once we update λ1 = λt−1

1 and λ2 = λt−1
2 from

the last episode, we reach a constrained saddle-point problem,

minimize
q1 ∈∆(P1)

maximize
q2 ∈∆(P2)

Lt(q1, q2;λt−1
1 , λt−1

2 ).

However, it is not feasible to take the domains ∆(P1) and ∆(P2) since the true transitions P1

and P2 are unknown. Instead, we use their optimistic estimates ∆(kt1) and ∆(kt2) in sense that
qt1 ∈ ∆(kt1) and qt2 ∈ ∆(kt2) hold with high probability; see Lemma 1. Denote q̂ t := (q̂ t1 , q̂

t
2). By

the linear approximation of Lt(q1, q2;λt−1) at the previous iterate (qt−1
1 , qt−1

2 ), we update the primal
variable via an online mirror descent step over the optimistic domains of q1 and q2,

q̂t ← argmin
q1 ∈∆(kt1)

argmax
q2 ∈∆(kt2)

(
V
〈
q1 · q̂ t−1

2 + q̂ t−1
1 · q2, r

t−1
〉

+λt−1
1 〈q1, g

t−1〉 − λt−1
2 〈q2, h

t−1〉 + η−1D
(
q | q̃ t−1

)) (47)

where V , η > 0 are some regularization parameters, D(· | ·) is the unnormalized Kullback-Leibler
divergence with a slightly abuse in a way that D(q | q′) := D(q1 | q′1)−D(q2 | q′2), q̃ t−1

1 and q̃ t−1
2

are mixing policies given by (9). The unnormalized Kullback-Leibler (KL) divergence between
two distributions p, q is defined by D(p | q) :=

∑
i pi ln pi

qi
−
∑

i(pi − qi). Moreover, (47) has an
efficient update that is similar as the one in Appendix 8.
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Once we obtain q̂ t, we next perform the dual update. We treat two λ-related regularization terms
in Lt(q̂ t1 , q̂

t
2 ;λ1, λ2), separately. The dual update works for each player in the usual way by adding

up all past constraint violations,

λt1 = max
(
λt−1

1 + (〈q̂ t1 , gt−1〉−b1 ), 0
)

and λt2 = max
(
λt−1

2 + (〈q̂ t2 , ht−1〉−b2 ), 0
)
. (48)

The dual update (48) increases λt−1
1 when q̂ t1 violates the approximate constraint 〈q1, g

t−1〉 ≤ b1; it
is similar for λt−1

2 . Once we replace the primal-dual update (8) and (10) in line 4 of Algorithm 1
by (47) and (48), we obtain a new version of Algorithm 1 for Problem (44).

Similar to Theorem 2, we have the following bounds on the regret and the constraint violation.

Theorem 16 (Regret Bound and Constraint Violation) Let Assumption 2 hold. Fix p ∈ (0, 1)
and T ≥ max(|X||A|, |B||Y |). In Algorithm 1 with the primal-dual update (47) and (48), we set
V = L

√
T , η = 1/(TL), and θ = 1/T . Then, the regret (5) and the constraint violation (6) satisfy

Regret(T ) ≤ Õ
(
(|X|+ |Y |)L

√
T (|A|+ |B|)

)
Violation1(T ),Violation2(T ) ≤ Õ

(
(|X|+ |Y |)L

√
T (|A|+ |B|)

)
with probability 1− p, where Õ(·) hides factor log 1

p .

We analyze Algorithm 1 with the primal-dual update (47) and (48) by following the proof idea in
Appendix 7. For completeness, we provide proof details in next two sections.

14.2. Regret Analysis

We recall that our algorithm maintains the occupancy measures (q̂ t1 , q̂
t
2) for estimating policies

(πt, µt) and Problem (44) defines the comparison solution (q?1, q
?
2) in hindsight. We decompose the

regret (45) as follows,

Regret(T ) =

T−1∑
t= 0

〈
q̂ t1 · q?2 − q?1 · q̂ t2 , rt

〉
︸ ︷︷ ︸

R̂egret(T )

+

T−1∑
t= 0

〈
(qt1 − q̂ t1) · q?2, rt

〉
︸ ︷︷ ︸

Error1

+

T−1∑
t= 0

〈
q?1 · (q̂ t2 − qt2), rt

〉
︸ ︷︷ ︸

Error2

where Error1 is the error of using q̂ t1 for the min-player and Error2 is the error of using q̂ t2 for the
max-player. By the occupancy measures in Algorithm 1, Error1 and Error2 take the bounds in
Lemma 4. However, we need to develop a new upper bound for R̂egret(T ) as follows.

Lemma 17 Fix δ ∈ (0, 1). Then, with probability 1− δ,

R̂egret(T ) ≤ V −1
T−1∑
t= 0

(
λt1
(
〈q?1, gt〉 − b1

)
+ λt2

(
〈q?2, ht〉 − b2

))
+ (ηV )−1L(1 + θT )

(
log(|X||A|) + log(|Y ||B|)

)
+ (2V −1L+ 4θ + ηV )LT.

Proof By Lemma 1, with probability 1− δ it holds that

∆(P1) ⊂ ∩T−1
t= 0∆(kt1) and ∆(P2) ⊂ ∩T−1

t= 0∆(kt2).
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We note that the solution (q?1, q
?
2) in hindsight to Problem (44) satisfies q?1 ∈ ∆(P1) and q?2 ∈ ∆(P2).

Hence, q?1 ∈ ∩
T−1
t= 0∆(kt1) and q?2 ∈ ∆(P2) ∩T−1

t= 0 ∆(kt2) with probability 1 − δ. For episode t, we
apply Lemma 13 to the primal update (47) with

f(x, y)|x= q1, y= q2 = V
〈
q1 · q̂ t−1

2 + q̂ t−1
1 · q2, r

t−1
〉

+ λt−1
1 〈q1, g

t−1〉 − λt−1
2 〈q2, h

t−1〉

and x? = q̂ t1 , y? = q̂ t2 , x′ = q̃ t−1
1 , y′ = q̃ t−1

2 , x = q?1 , and y = q?2 . Thus, with probability 1− δ it
holds for any t that

V
〈
q̂ t1 · q̂

t−1
2 + q̂ t−1

1 · q?2, rt−1
〉

+ λt−1
1 〈q̂ t1 , gt−1〉 − λt−1

2 〈q?2, ht−1〉

+ η−1
(
D(q̂ t1 , q̃

t−1
1 ) +D(q̂ t2 , q̃

t−1
2 )

)
≤ V

〈
q?1 · q̂

t−1
2 + q̂ t−1

1 · q̂ t2 , rt−1
〉

+ λt−1
1 〈q?1, gt−1〉 − λt−1

2 〈q̂ t2 , ht−1〉

+ η−1
(
D(q?1, q̃

t−1
1 ) + D(q?2, q̃

t−1
2 ) − D(q?1, q̂

t
1) − D(q?2, q̂

t
2)
)

or, equivalently,

V
〈
q̂ t1 · q̂

t−1
2 − q̂ t−1

1 · q̂ t2 , rt−1
〉

+ λt−1
1 〈q̂ t1 , gt−1〉 + λt−1

2 〈q̂ t2 , ht−1〉

+ η−1
(
D(q̂ t1 , q̃

t−1
1 ) +D(q̂ t2 , q̃

t−1
2 )

)
≤ V

〈
q?1 · q̂

t−1
2 − q̂ t−1

1 · q?2, rt−1
〉

+ λt−1
1 〈q?1, gt−1〉 + λt−1

2 〈q?2, ht−1〉

+ η−1
(
D(q?1, q̃

t−1
1 ) + D(q?2, q̃

t−1
2 ) − D(q?1, q̂

t
1) − D(q?2, q̂

t
2)
)
.

(49)

Let ∆t
1 := 1

2

(
(λt1)2 − (λt−1

1 )2
)

be the drift of the first consecutive dual updates. Then,

∆t
1 =

1

2

(
(λt1)2 − (λt−1

1 )2
)

=
1

2

(
max2

(
λt−1

1 +
(
〈q̂ t1 , gt−1〉 − b1

)
, 0
)
− (λt−1

1 )2
)

≤ λt−1
1

(
〈q̂ t1 , gt−1〉 − b1

)
+

1

2

(
〈q̂ t1 , gt−1〉 − b1

)2
≤ λt−1

1

(
〈q̂ t1 , gt−1〉 − b1

)
+ L2

(50)

where the first inequality is due to max2(x, 0) ≤ x2 and we apply 〈q̂ t1 , gt−1〉 ∈ [0, L], b1 ∈ [0, L] in
the last inequality. Similarly, if we let ∆t

2 := 1
2

(
(λt2)2 − (λt−1

2 )2
)
, then

∆t
2 ≤ λt−1

2

(
〈q̂ t2 , ht−1〉 − b2

)
+ L2. (51)

Adding (50) and (51) to (49) from both sides of the inequalities without changing the inequality
direction yields

V
〈
q̂ t1 · q̂

t−1
2 − q̂ t−1

1 · q̂ t2 , rt−1
〉

+ ∆t
1 + ∆t

2 + η−1
(
D(q̂ t1 , q̃

t−1
1 ) +D(q̂ t2 , q̃

t−1
2 )

)
≤ V

〈
q?1 · q̂

t−1
2 − q̂ t−1

1 · q?2, rt−1
〉

+ λt−1
1

(
〈q?1, gt−1〉 − b1

)
+ λt−1

2

(
〈q?2, ht−1〉 − b2

)
+ 2L2

+ η−1
(
D(q?1, q̃

t−1
1 ) +D(q?2, q̃

t−1
2 ) − D(q?1, q̂

t
1) − D(q?2, q̂

t
2)
)
.

(52)
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However,

V
〈
q̂ t1 · q̂

t−1
2 − q̂ t−1

1 · q̂ t2 , rt−1
〉

+ η−1
(
D(q̂ t1 , q̃

t−1
1 ) +D(q̂ t2 , q̃

t−1
2 )

)
= V

〈
q̂ t1 · q̂

t−1
2 − q̃ t−1

1 · q̂ t−1
2 , rt−1

〉
+ V

〈
q̃ t−1

1 · q̂ t−1
2 − q̂ t−1

1 · q̂ t−1
2 , rt−1

〉
+V

〈
q̂ t−1

1 · q̂ t−1
2 − q̂ t−1

1 · q̃ t−1
2 , rt−1

〉
+ V

〈
q̂ t−1

1 · q̃ t−1
2 − q̂ t−1

1 · q̂ t2 , rt−1
〉

+ η−1D(q̂ t1 , q̃
t−1
1 ) + η−1D(q̂ t2 , q̃

t−1
2 )

≥ −V
∥∥q̂ t−1

2 · rt−1
∥∥
∞
∥∥q̂ t1 − q̃ t−1

1

∥∥
1
− V

∥∥q̂ t−1
2 · rt−1

∥∥
∞
∥∥q̃ t−1

1 − q̂ t−1
1

∥∥
1

−V
∥∥q̂ t−1

1 · rt−1
∥∥
∞
∥∥q̂ t−1

2 − q̃ t−1
2

∥∥
1
− V

∥∥q̂ t−1
1 · rt−1

∥∥
∞
∥∥q̃ t−1

2 − q̂ t2
∥∥

1

+ (2ηL)−1
∥∥q̂ t1 − q̃ t−1

1

∥∥2

1
+ (2ηL)−1

∥∥q̂ t2 − q̃ t−1
2

∥∥
1

≥ −V
∥∥q̂ t1 − q̃ t−1

1

∥∥
1
− 2θV L + (2ηL)−1

∥∥q̂ t1 − q̃ t−1
1

∥∥2

1

− 2θV L − V
∥∥q̃ t−1

2 − q̂ t2
∥∥

1
+ (2ηL)−1

∥∥q̂ t2 − q̃ t−1
2

∥∥
1

≥ − 4θV L − ηV 2L

where we apply the Hölder’s inequality and Lemma 14 in the first inequality, the second inequality is
due to that∥∥q̃ t−1

1 − q̂ t−1
1

∥∥
1

=
L−1∑
`= 0

∑
x∈X`

∑
a∈A

∣∣∣∣(1− θ)q̂ t−1
1 (x, a) + θ

1

|X`||A|
− q̂ t−1

1 (x, a)

∣∣∣∣
≤ θ

L−1∑
`= 0

∑
x∈X`

∑
a∈A

q̂ t−1
1 (x, a) + θ

L−1∑
`= 0

∑
x∈X`

∑
a∈A

1

|X`||A|
= 2θL

and ‖q̃ t−1
2 − q̂ t−1

2 ‖1 ≤ 2θL that can be proved similarly, and the last inequality is due to−bx+ax2 ≥
−b2/(4a) for any a, b > 0. Therefore, we take the lower bound above for the left-hand side of (52),

∆t
1 + ∆t

2 − 4θV L − ηV 2L

≤ V
〈
q?1 · q̂

t−1
2 − q̂ t−1

1 · q?2, rt−1
〉

+ λt−1
1

(
〈q?1, gt−1〉 − b1

)
+ λt−1

2

(
〈q?2, ht−1〉 − b2

)
+ 2L2

+ η−1
(
D(q?1, q̃

t−1
1 ) +D(q?2, q̃

t−1
2 )−D(q?1, q̂

t
1)−D(q?2, q̂

t
2)
)
.

(53)
By Lemma 15,

D(q?1, q̃
t−1
1 )−D(q?1, q̂

t
1) = D(q?1, q̃

t−1
1 )−D(q?1, q̂

t−1
1 ) +D(q?1, q̂

t−1
1 )−D(q?1, q̂

t
1)

≤ θL log(|X||A|) +D(q?1, q̂
t−1
1 )−D(q?1, q̂

t
1)

and, similarly,

D(q?2, q̃
t−1
2 )−D(q?2, q̂

t
2) ≤ θL log(|Y ||B|) +D(q?2, q̂

t−1
2 )−D(q?2, q̂

t
2).

We now simplify (53) into

∆t
1 + ∆t

2 ≤ V
〈
q?1 · q̂

t−1
2 − q̂ t−1

1 · q?2, rt−1
〉

+ λt−1
1

(
〈q?1, gt−1〉 − b1

)
+ λt−1

2

(
〈q?2, ht−1〉 − b2

)
+ η−1

(
D(q?1, q̂

t−1
1 ) +D(q?2, q̂

t−1
2 )−D(q?1, q̂

t
1)−D(q?2, q̂

t
2)
)

+ η−1θL
(

log(|X||A|) + log(|Y ||B|)
)

+ 2L2 + 4θV L + ηV 2L
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which leads to the desired result by summing it up from t = 1 to T ,

T∑
t= 1

(
∆t

1 + ∆t
2

)
≤ V

T∑
t= 1

〈
q?1 · q̂ t−1

2 − q̂ t−1
1 · q?2, rt−1

〉
+

T∑
t= 1

(
λt−1

1

(
〈q?1, gt−1〉 − b1

)
+ λt−1

2

(
〈q?2, ht−1〉 − b2

))
+ η−1

T∑
t= 1

(
D(q?1, q̂

t−1
1 ) +D(q?2, q̂

t−1
2 )−D(q?1, q̂

t
1)−D(q?2, q̂

t
2)
)

+ η−1θLT
(

log(|X||A|) + log(|Y ||B|)
)

+ 2L2T + 4θV LT + ηV 2LT

≤ V

T∑
t= 1

〈
q?1 · q̂ t−1

2 − q̂ t−1
1 · q?2, rt−1

〉
+

T∑
t= 1

(
λt−1

1

(
〈q?1, gt−1〉 − b1

)
+ λt−1

2

(
〈q?2, ht−1〉 − b2

))
+ η−1

(
D(q?1, q̂

0
1 ) +D(q?2, q̂

0
2 )
)

+ η−1θLT
(

log(|X||A|) + log(|Y ||B|)
)

+ 2L2T + 4θV LT + ηV 2LT

which leads to the desired result by noting that

D(q?1, q̂
0
1 ) ≤ L log(|X||A|), D(q?2, q̂

0
2 ) ≤ L log(|Y ||B|), and

T∑
t= 1

(
∆t

1 + ∆t
2

)
≥ 0.

To analyze the bound in Lemma 17, in Lemma 18, we next utilize a new drift bound from
Lemma 22 to establish the boundedness of λt := (λt1, λ

t
2) first. Then, we apply a general Azuma-

Hoeffding inequality for supermartingales in Lemma 19.

Lemma 18 Let Assumption 2 hold. Fix δ ∈ (0, 1). For any integer t0 > 0, with probability 1− Tδ,∥∥λt∥∥ ≤ Θ + 2t0L+ t0
64L2

ξ
log

(
128L2

ξ

)
+ t0

64L2

ξ
log

1

δ

for all t = 1, . . . , T , where ξ > 0 and

Θ := t0
(

1
2ξ + 2L

)
+ 4L2+(8θ+2ηV+2)V L

ξ + 2L(log(|X||A|/θ)+log(|Y ||B|/θ))
t0ξη

.

Proof Let F t be an σ-algebra that is generated by the state-action sequence, reward/utility functions
for both players up to episode t. At the beginning, F0 = {∅,Ω}. We have a discrete-time random
process {

∥∥λt∥∥ , t ≥ 0} that adapts to F t. It suffices to check all assumptions in Lemma 22.
By the dual update (48),∣∣λt+1

1 − λt1
∣∣ =

∣∣∣max
(
λt1 +

(
〈q̂ t+1

1 , gt〉 − b1
)
, 0
)
− λt1

∣∣∣
≤

∣∣〈q̂ t+1
1 , gt〉 − b1

∣∣
≤ L
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where the first inequality is clear from two cases for max(·) and the second inequality is due to
〈q̂ t+1

1 , gt〉 ∈ [0, L], b1 ∈ [0, L]. Similarly,
∣∣λt+1

2 − λt2
∣∣ ≤ L. Hence,∣∣∥∥λt+1

∥∥− ∥∥λt∥∥∣∣ ≤ ∥∥λt+1 − λt
∥∥ =

√
(λt+1

1 − λt1)2 + (λt+1
2 − λt2)2 ≤ 2L.

Consequently,

‖λ‖t+t0 − ‖λ‖t =

t+t0−1∑
s= t

(
‖λ‖s+1 − ‖λ‖s

)
≤

t+t0−1∑
s= t

∣∣∣‖λ‖s+1 − ‖λ‖s
∣∣∣ ≤ 2t0L (54)

which leads to E[ ‖λ‖t+t0 − ‖λ‖t | F t ] ≤ 2t0L. It is convenient to take δmax = 2L in Lemma 22.
We next determine the validity of other assumptions in Lemma 22. Let us denote the event

in Lemma 1 by Egood and we have P (Egood) ≥ 1 − δ. Let ∆t := 1
2

( ∥∥λt∥∥2 −
∥∥λt−1

∥∥2 ). Clearly,
∆t = ∆t

1 + ∆t
2. We recall that the proof of Lemma 5 remains to be valid if we replace q?1 by q̄1 and

q?2 by q̄2 starting from (49). By doing so, it is ready to obtain a similar result as (53): under the good
event Egood it holds for any τ that

∆τ − 4θV L − ηV 2L

≤ V
〈
q̄1 · q̂ τ−1

2 − q̂ τ−1
1 · q̄2, r

τ−1
〉

+ λτ−1
1

(
〈q̄1, g

τ−1〉 − b1
)

+ λτ−1
2

(
〈q̄2, h

τ−1〉 − b2
)

+ 2L2

+ η−1
(
D(q̄1, q̃

τ−1
1 ) +D(q̄2, q̃

τ−1
2 )−D(q̄1, q̂

τ
1 )−D(q̄2, q̂

τ
2 )
)
.

or, equivalently,

‖λτ‖2 −
∥∥λτ−1

∥∥2

≤ 2V
〈
q̄1 · q̂ τ−1

2 − q̂ τ−1
1 · q̄2, r

τ−1
〉

+ 2λτ−1
1

(
〈q̄1, g

τ−1〉 − b1
)

+ 2λτ−1
2

(
〈q̄2, h

τ−1〉 − b2
)

+ 4L2

+ 2η−1
(
D(q̄1, q̃

τ−1
1 ) +D(q̄2, q̃

τ−1
2 )−D(q̄1, q̂

τ
1 )−D(q̄2, q̂

τ
2 )
)

+ 8θV L + 2ηV 2L.
(55)

We note that |〈q̄1 · q̂ τ2 − q̂ τ1 · q̄2, r
τ 〉| ≤ L. By summing both sides of (55) from τ = t + 1 to

τ = t+ t0,∥∥λt+t0∥∥2 −
∥∥λt∥∥2 ≤ 2t0V L + 2

t+t0−1∑
τ = t

(
λτ1
(
〈q̄1, g

τ 〉 − b1
)

+ λτ2
(
〈q̄2, h

τ 〉 − b2
))

+ 4t0L
2

+ 2η−1
(
D(q̄1, q̃

t
1) +D(q̄2, q̃

t
2)
)

+ 8t0θV L + 2t0ηV
2L

where we omit two non-positive terms. Taking the conditional expectation given F t and Egood yields,

E
[∥∥λt+t0∥∥2 −

∥∥λt∥∥2 | F t, Egood

]
≤ 2t0V L + 2

t+t0−1∑
τ = t

E
[
λτ1
(
〈q̄1, g

τ 〉 − b1
)

+ λτ2
(
〈q̄2, h

τ 〉 − b2
)
| F t, Egood

]
+ 4t0L

2

+ 2η−1E
[
D(q̄1, q̃

t
1) +D(q̄2, q̃

t
2) | F t, Egood

]
+ 8t0θV L + 2t0ηV

2L

≤ 2t0V L − 2ξ

t+t0−1∑
τ = t

E
[
‖λτ‖ | F t, Egood

]
+ 4t0L

2

+ 2η−1L(log(|X||A|/θ) + log(|Y ||B|/θ)) + 8t0θV L + 2t0ηV
2L

≤ 2t0V L − 2ξt0E
[∥∥λt∥∥ | F t, Egood

]
+ 2ξt0(t0 − 1)L + 4t0L

2

+ 2η−1L(log(|X||A|/θ) + log(|Y ||B|/θ)) + 8t0θV L + 2t0ηV
2L

(56)
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where the second inequality is due to Lemma 15 and the fact: by the law of total expectation, for any
τ ≥ t, F t ⊂ Fτ and

E
[
λτ1
(
〈q̄1, g

τ 〉 − b1
)

+ λτ2
(
〈q̄2, h

τ 〉 − b2
)
| F t, Egood

]
= E

[
E
[
λτ1
(
〈q̄1, g

τ 〉 − b1
)

+ λτ2
(
〈q̄2, h

τ 〉 − b2
)
| Fτ , Egood

]
| F t, Egood

]
= E

[
λτ1E [〈q̄1, g

τ 〉 − b1] | F t, Egood
]

+ E
[
λτ2E [〈q̄2, h

τ 〉 − b2] | F t, Egood
]

= E [〈q̄1, g
τ 〉 − b1]E

[
λτ1 | F t, Egood

]
+ E [〈q̄2, h

τ 〉 − b2]E
[
λτ2 | F t, Egood

]
≤ − ξ E

[
λτ1 + λτ2 | F t, Egood

]
≤ − ξ E

[
‖λτ‖ | F t, Egood

]
where the inequality is due to the strict feasibility assumption on (q̄1, q̄2); the last inequality is due to
that

t+t0−1∑
τ = t

E
[
‖λτ‖ | F t, Egood

]
≥

t+t0−1∑
τ = t

E
[∥∥λt∥∥− 2(τ − t)L | F t, Egood

]
=

t0−1∑
τ = 0

E
[∥∥λt∥∥− 2τL | F t, Egood

]
which follows the fact ‖λτ‖ ≥

∥∥λt∥∥−2(τ−t)L for any τ ≥ t ≥ 0 if we note that
∣∣∥∥λt+1

∥∥− ∥∥λt∥∥∣∣ ≤
2L. Hence, we can simplify (56) as

E
[∥∥λt+t0∥∥2 | F t, Egood

]
≤ E

[∥∥λt∥∥2 | F t, Egood

]
− 2ξt0E

[∥∥λt∥∥ | F t, Egood
]

+ 2ξt20L + 4t0L
2 + 2t0V L

+ 2η−1L(log(|X||A|/θ) + log(|Y ||B|/θ)) + 8t0θV L + 2t0ηV
2L

≤ E
[∥∥λt∥∥2 | F t, Egood

]
− ξt0E

[∥∥λt∥∥ | F t, Egood
]
− ξt0Θ + 2ξt20L + 4t0L

2 + 2t0V L

+ 2η−1L(log(|X||A|/θ) + log(|Y ||B|/θ)) + 8t0θV L + 2t0ηV
2L

= E
[∥∥λt∥∥2 | F t, Egood

]
− ξt0E

[∥∥λt∥∥ | F t, Egood
]
− 1

2
ξ2t20

≤
(
E
[∥∥λt∥∥ | F t, Egood

]
− 1

2
ξt0

)2

where we apply λt ≥ Θ for the second inequality and we take Θ in Lemma 22,

Θ =
1

2
ξt0 + 2t0L +

4L2 + 8θV L+ 2ηV 2L+ 2V L

ξ
+

2L(log(|X||A|/θ) + log(|Y ||B|/θ))
t0ξη

.

Taking the square root and applying the Jensen’s inequality yield

E
[∥∥λt+t0∥∥ | F t, Egood

]
≤
√
E
[
‖λt+t0‖2 | F t, Egood

]
≤
∥∥λt∥∥− 1

2
ξt0
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which shows that E
[∥∥λt+t0∥∥− ∥∥λt∥∥ | F t, Egood

]
≤ −1

2ξt0. Application of law of total expectation
to this inequality and (54) with δ < 1

12 yields

E
[∥∥λt+t0∥∥− ∥∥λt∥∥ | F t] = P (Egood)E

[∥∥λt+t0∥∥− ∥∥λt∥∥ | F t, Egood
]

+P (Ēgood)E
[∥∥λt+t0∥∥− ∥∥λt∥∥ | F t, Ēgood

]
≤ −1

2
ξt0 × (1− δ) + 2t0L× δ

≤ −1

4
ξt0

which verifies the assumption of Lemma 22 if we take ζ = ξ/4.
We now have verified all assumptions of Lemma 22 with appropriate parameters Θ, δmax, ζ. For

episode t, with probability 1− δ it holds that

∥∥λt∥∥ ≤ Θ + t0δmax + t0
4δ2

max

ζ
log

(
8δ2

max

ζ

)
+ t0

4δ2
max

ζ
log

1

δ
.

We complete the proof by taking a union bound over t = 1, · · · , T .

Lemma 19 Let Assumption 2 hold. Fix δ ∈ (0, 1). For any integer t0 > 0, with probability 1−2Tδ,

T−1∑
t= 0

(
λt1
(
〈q?1, gt〉 − b1

)
+ λt2

(
〈q?2, ht〉 − b2

))
≤
√

2Tc2 log(1/(δT ))

where c := 2ΘL+ 4t0L
2 + 128t0L3

ξ

(
log
(

128L2

ξ

)
+ log 1

δ

)
and ξ > 0.

Proof Let Zt :=
∑t−1

τ = 0

(
λτ1
(
〈q?1, gτ 〉 − b1

)
+ λτ2

(
〈q?2, hτ 〉 − b2

))
. We note that

E
[
Zt | F t−1

]
= E

[
t−1∑
τ = 0

(
λτ1
(
〈q?1, gτ 〉 − b1

)
+ λτ2

(
〈q?2, hτ 〉 − b2

)) ∣∣∣∣F t−1

]

= E

[
t−2∑
τ = 0

(
λτ1
(
〈q?1, gτ 〉 − b1

)
+ λτ2

(
〈q?2, hτ 〉 − b2

)) ∣∣∣∣F t−1

]
+λt−1

1 E
[(
〈q?1, gt−1〉 − b1

)
| F t−1

]
+ λt−1

2 E
[(
〈q?2, ht−1〉 − b2

)
| F t−1

]
≤ E

[
t−2∑
τ = 0

(
λτ1
(
〈q?1, gτ 〉 − b1

)
+ λτ2

(
〈q?2, hτ 〉 − b2

)) ∣∣∣∣F t−1

]
= E

[
Zt−1

]
where the inequality is because of E

[(
〈q?1, gt−1〉 − b1

)
| F t−1

]
= 〈q?1, g〉 − b1 ≤ 0 and

E
[(
〈q?2, ht−1〉 − b1

)
| F t−1

]
≤ 〈q?2, h〉 − b2 ≤ 0. Hence, {Zt, t ≥ 0} a supermartingale.

We also note that∣∣Zt+1 − Zt
∣∣ = λt1

∣∣〈q?1, gt〉 − b1∣∣+ λt2
∣∣〈q?2, ht〉 − b2∣∣ ≤ 2

∥∥λt∥∥L
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Thus, if |Zt+1 − Zt| > c for some c ∈ R+, then
∥∥λt∥∥ > c/(2L). Let Y t :=

∥∥λt∥∥ − c/(2L).
Therefore,

{|Zt+1 − Zt| > c} ⊂ {Y t > 0}.

By Lemma 23,

P

(
T−1∑
t= 0

(
λt1
(
〈q?1, gt〉 − b1

)
+ λt2

(
〈q?2, ht〉 − b2

))
≥ z

)
≤ e−z

2/(2c2T ) +
T−1∑
τ = 0

P
(∥∥λt∥∥ > c

2L

)
.

(57)
By Lemma 18, with probability 1− δ it holds for any t that∥∥λt∥∥ ≤ Θ + 2t0L+ t0

64L2

ξ
log

(
128L2

ξ

)
+ t0

64L2

ξ
log

1

δ

or, equivalently,

P

(∥∥λt∥∥ ≥ Θ + 2t0L+ t0
64L2

ξ
log

(
128L2

ξ

)
+ t0

64L2

ξ
log

1

δ

)
≤ δ.

If we take

c = 2ΘL+ 4t0L
2 + t0

128L3

ξ
log

(
128L2

ξ

)
+ t0

128L3

ξ
log

1

δ
and z =

√
2Tc2 log(1/(δT ))

then (57) becomes

P

(
T−1∑
t= 0

(
λt1
(
〈q?1, gt〉 − b1

)
+ λt2

(
〈q?2, ht〉 − b2

))
≥ z

)
≤ 2δT

which proves the desired result.

We now ready to conclude a bound on R̂egret(T ) by combining Lemma 19 and Lemma 17.

Theorem 20 Let Assumption 2 hold. Fix T ≥ max(|X||A|, |B||Y |). Let V = L
√
T , η = 1/(TL),

t0 =
√
T , and θ = 1/T . Then, with probability 1− 2Tδ it holds that

R̂egret(T ) ≤ Õ
(
(|X|+ |Y |)L

√
T
)
.

Proof Using the given parameters V , η, t0, and θ for Lemma 17, R̂egret(T ) is upper bounded
by 1

L
√
T

∑T−1
t= 0

(
λt1
(
〈q?1, gt〉 − b1

)
+ λt2

(
〈q?2, ht〉 − b2

))
+ Õ(L

√
T ) with probability 1 − δ. We

note that Θ ≤ Õ(L2
√
T ) and T ≥ max(|X||A|, |B||Y |). Using parameters in Lemma 19, with

probability 1− 2Tδ,

T−1∑
t= 0

(
λt1
(
〈q?1, gt〉 − b1

)
+ λt2

(
〈q?2, ht〉 − b2

))
≤ Õ(L3T ).

We complete the proof by noting L ≤ |X|+ |Y |.

We conclude the regret bound in Theorem 16 by combining Lemma 4 and Theorem 20, and
δ = p/(2T ).
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14.3. Constraint Violation Analysis

We begin with a decomposition using the auxiliary occupancy measures (qt1, q
t
2). By inserting 〈q̂ t1 , gt〉

and 〈q̂ t2 , ht〉 into Violation1(T ) and Violation2(T ), we have

Violation1(T ) =

[
T−1∑
t= 0

(〈
q̂ t1 , g

t
〉
− b1

)]
+︸ ︷︷ ︸

̂Violation1(T )

+
T−1∑
t= 0

〈
qt1 − q̂ t1 , gt

〉
︸ ︷︷ ︸

Error3

Violation2(T ) =

[
T−1∑
t= 0

(〈
q̂ t2 , h

t
〉
− b2

)]
+︸ ︷︷ ︸

̂Violation2(T )

+
T−1∑
t= 0

〈
qt2 − q̂ t2 , ht

〉
︸ ︷︷ ︸

Error4

.

For Error3 and Error4, we have the same bounds in Lemma 9. We next bound ̂Violation1(T ) and
̂Violation2(T ) by applying the epoch property (Jaksch et al., 2010); see a proof in Appendix 13.

Theorem 21 Let V = L
√
T , η = 1/(TL), t0 =

√
T , and θ = 1/T . Then,

̂Violation1(T ), ̂Violation2(T ) ≤
∥∥λT∥∥ +

2

T − 1

T∑
t= 1

∥∥λt−1
∥∥ + Õ

(
L
√
T (|X||A|+ |Y ||B|)

)
.

Proof By the dual update (48),

λt1 = max
(
λt−1

1 +
( 〈
q̂ t1 , g

t−1
〉
− b1

)
, 0
)

≥ λt−1
1 +

( 〈
q̂ t1 , g

t−1
〉
− b1

)
= λt−1

1 +
( 〈
q̂ t−1

1 , gt−1
〉
− b1

)
+
〈
q̂ t1 − q̂

t−1
1 , gt−1

〉
≥ λt−1

1 +
( 〈
q̂ t−1

1 , gt−1
〉
− b1

)
−
∥∥q̂ t1 − q̂ t−1

1

∥∥
1

(58a)

where the last inequality is due to: 〈q̂ t1 − q̂
t−1
1 , gt−1〉 ≤ ‖q̂ t1−q̂

t−1
1 ‖1‖gt−1‖∞, and ‖gt−1‖∞ ∈ [0, 1].

Similarly,
λt2 ≥ λt−1

2 +
( 〈
q̂ t−1

2 , ht−1
〉
− b2

)
−
∥∥q̂ t2 − q̂ t−1

2

∥∥
1
. (58b)

We note that λ0
1 = λ0

2 = 0 from the initialization. Summing up both sides of (58a) from t = 1 to
t = T leads to

T−1∑
t= 0

( 〈
q̂ t1 , g

t
〉
− b1

)
≤ λT1 +

T∑
t= 1

∥∥q̂ t1 − q̂ t−1
1

∥∥
1
. (59a)

Similarly,
T−1∑
t= 0

( 〈
q̂ t2 , h

t
〉
− b2

)
≤ λT2 +

T∑
t= 1

∥∥q̂ t2 − q̂ t−1
2

∥∥
1
. (59b)

Hence,

̂Violation1(T ), ̂Violation2(T ) ≤
∥∥λT∥∥ +

T∑
t= 1

(∥∥q̂ t1 − q̂ t−1
1

∥∥
1

+
∥∥q̂ t1 − q̂ t−1

1

∥∥
1

)
. (60)
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We recall q̂ t1 ∈ ∆(kt1), q̂ t2 ∈ ∆(kt2) in the primal update (47) and ∆(kt1) and ∆(kt2) in the
confidence sets (11). To bound

∥∥q̂ t1 − q̂ t−1
1

∥∥
1

+
∥∥q̂ t2 − q̂ t−1

2

∥∥
1
, we consider two cases: (i) kt1 = kt−1

1

and kt2 = kt−1
2 ; (ii) either kt1 6= kt−1

1 or kt2 6= kt−1
2 .

Case (i). In this case, we have: q̂ t1 , q̂ t−1
1 ∈ ∆(kt1), q̂ t2 , q̂ t−1

2 ∈ ∆(kt2). We begin with the primal
update (8) and apply Lemma 13 with,

f(x, y)|x= q1, y= q2 = V
〈
q1 · q̂ t−1

2 + q̂ t−1
1 · q2, r

t−1
〉

+ λt−1
1 〈q1, g

t−1〉 − λt−1
2 〈q2, h

t−1〉

and x? = q̂ t1 , y? = q̂ t2 , x′ = q̃ t−1
1 , y′ = q̃ t−1

2 , x = q̃ t−1
1 , and y = q̃ t−1

2 . Thus,

V
〈
q̂ t1 · q̂

t−1
2 + q̂ t−1

1 · q̃ t−1
2 , rt−1

〉
+ λt−1

1 〈q̂ t1 , gt−1〉 − λt−1
2 〈q̃ t−1

2 , ht−1〉

+ η−1
(
D(q̂ t1 , q̃

t−1
1 ) +D(q̂ t2 , q̃

t−1
2 )

)
≤ V

〈
q̃ t−1

1 · q̂ t−1
2 + q̂ t−1

1 · q̂ t2 , rt−1
〉

+ λt−1
1 〈q̃ t−1

1 , gt−1〉 − λt−1
2 〈q̂ t2 , ht−1〉

− η−1
(
D(q̃ t−1

1 , q̂ t1) +D(q̃ t−1
2 , q̂ t2)

)
.

or, equivalently,

η−1
(
D(q̂ t1 , q̃

t−1
1 ) +D(q̂ t2 , q̃

t−1
2 )

)
+ η−1

(
D(q̃ t−1

1 , q̂ t1) +D(q̃ t−1
2 , q̂ t2)

)
≤ V

〈
(q̃ t−1

1 − q̂ t1) · q̂ t−1
2 + q̂ t−1

1 · (q̂ t2 − q̃
t−1
2 ), rt−1

〉
+λt−1

1 〈q̃ t−1
1 − q̂ t1 , gt−1〉 + λt−1

2 〈q̃ t−1
2 − q̂ t2 , ht−1〉.

(61)

We note that 〈(q̃ t−1
1 − q̂ t1) · q̂ t−1

2 , rt−1〉 ≤ ‖(q̃ t−1
1 − q̂ t1) · q̂ t−1

2 ‖1‖rt−1‖∞ ≤ ‖q̃ t−1
1 − q̂ t1‖1, and,

similarly, 〈q̂ t−1
1 · (q̂ t2 − q̃

t−1
2 ), rt−1〉 ≤ ‖q̂ t2 − q̃

t−1
2 ‖1. Thus, we can reduce (61) into

η−1
(
D(q̂ t1 , q̃

t−1
1 ) +D(q̂ t2 , q̃

t−1
2 )

)
+ η−1

(
D(q̃ t−1

1 , q̂ t1) +D(q̃ t−1
2 , q̂ t2)

)
≤ (V + λt−1

1 )
∥∥q̃ t−1

1 − q̂ t1
∥∥

1
+ (V + λt−1

2 )
∥∥q̃ t−1

2 − q̂ t2
∥∥

1

≤ (V +
∥∥λt−1

∥∥)
(∥∥q̃ t−1

1 − q̂ t1
∥∥

1
+
∥∥q̃ t−1

2 − q̂ t2
∥∥

1

)
where the left-hand side can be lower bounded by Lemma 14,

D(q̂ t1 , q̃
t−1
1 ) +D(q̃ t−1

1 , q̂ t1) ≥ L−1
∥∥q̃ t−1

1 − q̂ t1
∥∥2

1

D(q̂ t2 , q̃
t−1
2 ) +D(q̃ t−1

2 , q̂ t2) ≥ L−1
∥∥q̃ t−1

2 − q̂ t2
∥∥2

1
.

Then, we apply the inequality (x+ y)2 ≤ 2(x2 + y2) and cancel a non-negative term to obtain∥∥q̃ t−1
1 − q̂ t1

∥∥
1

+
∥∥q̃ t−1

2 − q̂ t2
∥∥

1
≤ 2ηL(V +

∥∥λt−1
∥∥). (62)

By the definition of q̃ t−1
1 and q̃ t−1

2 ,

∥∥q̃ t−1
1 − q̂ t1

∥∥
1

=

L−1∑
`= 0

∑
x∈X`

∑
a∈A

∣∣∣∣(1− θ)q̂ t−1
1 (x, a) + θ

1

|X`||A|
− q̂ t1(x, a)

∣∣∣∣
≥

L−1∑
`= 0

∑
x∈X`

∑
a∈A

(
(1− θ)

∣∣q̂ t−1
1 (x, a)− q̂ t1(x, a)

∣∣− θ( 1

|X`||A|
+ q̂ t1(x, a)

))
= (1− θ)

∥∥q̂ t−1
1 − q̂ t1

∥∥
1
− 2θL.
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Similarly, we have ‖q̃ t−1
2 − q̂ t2‖1 ≤ (1− θ)‖q̂ t−1

2 − q̂ t2‖1 − 2θL. Thus, we can further reduce (62)
into ∥∥q̂ t−1

1 − q̂ t1
∥∥

1
+ ‖q̂ t−1

2 − q̂ t2‖1 ≤ 2η(1− θ)−1L(V +
∥∥λt−1

∥∥) + 4θ(1− θ)−1L. (63)

Case (ii). In this case, either q̂ t1 , q̂ t−1
1 or q̂ t2 , q̂ t−1

2 might not have the same domain. For in-
stance, when kt1 > kt−1

1 , it is possible that ∆(kt1) becomes different from ∆(kt−1
1 ). We note

that kt1 > kt−1
1 only happens when episode t is the first one that belongs to epoch kt1. By

Lemma 25, kT1 ≤
√
T |X||A| log(8T/(|X||A|)) and kT2 ≤

√
T |Y ||B| log(8T/(|Y ||B|)) if we

are given T ≥ max(|X||A|, |Y ||B|).
We now combine two cases above for (60),

T∑
t= 1

(∥∥q̂ t1 − q̂ t−1
1

∥∥
1

+
∥∥q̂ t2 − q̂ t−1

2

∥∥
1

)
=

∑
1≤ t≤T

kt1 = kk−1
1 ∧ kt2 = kk−1

2

(∥∥q̂ t1 − q̂ t−1
1

∥∥
1

+
∥∥q̂ t2 − q̂ t−1

2

∥∥
1

)
+

∑
1≤ t≤T

kt1 = kk−1
1 ∨ kt2 = kk−1

2

(∥∥q̂ t1 − q̂ t−1
1

∥∥
1

+
∥∥q̂ t2 − q̂ t−1

2

∥∥
1

)
≤

∑
1≤ t≤T

kt1 = kk−1
1 ∧ kt2 = kk−1

2

(∥∥q̂ t1 − q̂ t−1
1

∥∥
1

+
∥∥q̂ t2 − q̂ t−1

2

∥∥
1

)
+ 2L(kT1 + kT2 )

≤ 2η(1− θ)−1L
T∑
t= 1

(V +
∥∥λt−1

∥∥) + 4θ(1− θ)−1LT + 2L(kT1 + kT2 )

where the first inequality is due to:
∥∥q̂ t1 − q̂ t−1

1

∥∥
1
≤ 2L and

∥∥q̂ t2 − q̂ t−1
2

∥∥
1
≤ 2L, and we apply (63)

from the case (i) for the last inequality. Using the bounds on kT1 , kT2 in the case (ii), we conclude the
desired bound for (60),

̂Violation1(T ), ̂Violation2(T )

≤
∥∥λT∥∥ +

2ηL

1− θ

T∑
t= 1

∥∥λt−1
∥∥+

2ηV + 4θ

1− θ
LT

+2L
(√

T |X||A| log(8T/(|X||A|)) +
√
T |Y ||B| log(8T/(|Y ||B|))

)
.

We complete the proof by noting λ0
1 = λ0

2 = 0, V = L
√
T , η = 1/(TL), and θ = 1/T .

To get the violation bound, we apply Lemma 18 to Theorem 21, use Lemma 9, and take
δ = p/(2T ).

15. Supporting Lemmas

We collect some useful lemmas in literature for the convenience of reading our paper.
The following drift analysis of stochastic processes is useful in the constraint violation analysis.
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Lemma 22 (Yu et al., 2017) Let {Zt, t ≥ 0} be a discrete-time stochastic process that is adapted to
a filtration {F t, t ≥ 0} with Z0 = 0 and F0 = {∅,Ω}. Assume that there exists t0 ∈ Z+, Θ ∈ R+,
δmax ∈ R+, and ζ ∈ (0, δmax] such that for all t ≥ 1,

∣∣Zt+1 − Zt
∣∣ ≤ δmax and E

[
Zt+t0 − Zt | F t

]
≤

t0 δmax when Zt ≤ Θ

− t0 ζ otherwise Zt ≥ Θ.

Then, with probability 1− δ it holds for any t that

Zt ≤ Θ + t0δmax + t0
4δ2

max

ζ
log

(
8δ2

max

ζ

)
+ t0

4δ2
max

ζ
log

1

δ
.

A general Azuma-Hoeffding inequality for supermartingales with unbounded differences is given
as follows.

Lemma 23 (Yu et al., 2017) Let {Zt, t ≥ 0} be a supermartingale that is adapted to a filtration
{F t, t ≥ 0} with Z0 = 0 and F0 = {∅,Ω}. Let {Y t, t ≥ 0} be a discrete-time stochastic process
that is adapted to a filtration {F t, t ≥ 0}. Assume that there exists a constant c ∈ R+ such that
{|Zt+1 − Zt| > c} ⊂ {Y t > 0} for any t ≥ 0. Then, for any z ∈ R+ and t ≥ 1,

P (Zt ≥ z) ≤ e−z
2/(2c2t) +

t−1∑
τ = 0

P (Y t > 0).

The following two lemmas are useful in the epoch analysis.

Lemma 24 (Jaksch et al., 2010) Let a sequence of positive numbers be x1, . . . , xn. Assume that
0 ≤ xk ≤ Xk−1 := max(1,

∑k−1
i= 1 xi) for 1 ≤ k ≤ n. Then,

n∑
k= 1

xk√
Xk−1

≤ (
√

2 + 1)
√
Xn.

Lemma 25 (Jaksch et al., 2010) Assume that T ≥ max(|X||A|, |Y ||B|). Then, the epochs kT1 and
kT2 for episode T

kT1 ≤ |X||A| log

(
8T

|X||A|

)
≤
√
T |X||A| log

(
8T

|X||A|

)

kT2 ≤ |Y ||B| log

(
8T

|Y ||B|

)
≤
√
T |Y ||B| log

(
8T

|Y ||B|

)
.
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